Benthic Characterization of Mesophotic Communities Based on Optical Depths in the Southern Mexican Pacific Coast (Oaxaca)
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
Benthic Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, C.M.; McClean, C.J.; Veron, J.E.; Hawkins, J.P.; Allen, G.R.; McAllister, D.E.; Werner, T.B. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 2002, 295, 1280–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, T.P.; Barnes, M.L.; Bellwood, D.R.; Cinner, J.E.; Cumming, G.S.; Jackson, J.B.C.; Kleypas, J.; Van de Leemput, I.A.; Lough, J.M.; Morrison, T.H.; et al. Coral reefs in the Anthropocene. Nature 2017, 546, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glynn, P.W. Coral reef bleaching: Facts, hypotheses, and implications. Glob. Change Biol. 1996, 2, 495–509. [Google Scholar] [CrossRef]
- Reyes-Bonilla, H.; Carriquiry, J.; Leyte-Morales, G.; Cupul-Magaña, A. Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997–1999) on coral reefs of the western coast of México. Coral Reefs 2002, 21, 368–372. [Google Scholar] [CrossRef]
- Leyte-Morales, G.E.; Bonilla, H.R.; Cintra-Buenrostro, C.E.; Glynn, P.W. Range extension of Leptoseris papyracea (Dana, 1846) to the west coast of Mexico. Bull. Mar. Sci. 2001, 69, 1233–1237. [Google Scholar]
- Smith, T.B.; Glynn, P.W.; Maté, J.L.; Toth, L.T.; Gyory, J.A. Depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 2014, 95, 1663–1673. [Google Scholar] [CrossRef] [Green Version]
- Hinderstein, L.M.; Marr, J.C.A.; Martinez, F.A.; Dowgiallo, M.J.; Puglise, K.A.; Pyle, R.L.; Appeldoorn, R. Theme section on “Mesophotic coral ecosystems: Characterization, ecology, and management”. Coral Reefs 2010, 29, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Baker, E.K.; Puglise, K.A.; Harris, P.T. Mesophotic Coral Ecosystems: A Lifeboat for Coral Reefs? The United Nations Environment Program and GRID-Arendal, Nairobi and Arendal: Nairobi, Republic of Kenya, 2016; 98p. [Google Scholar]
- Pomar, L. Types of carbonate platforms: A genetic approach. Basin Res. 2001, 13, 313–334. [Google Scholar] [CrossRef]
- Puglise, K.A.; Hinderstein, L.; Marr, J.C.A.; Dowgiallo, M.J.; Martinez, F.A. Mesophotic coral ecosystems research strategy: International Workshop to prioritize research and Management needs for Mesophotic Coral Ecosystems. In Proceedings of the NOAA National Centers for Coastal Ocean Science, Jupiter, FL, USA, 12–15 July 2008; p. 24. [Google Scholar]
- Laverick, J.H.; Tamir, R.; Eyal, G.; Loya, Y. A generalized light-driven model of community transitions along coral reef depth gradients. Glob. Ecol. Biogeogr. 2020, 29, 1554–1564. [Google Scholar] [CrossRef]
- Spalding, H.L. Ecology of Mesophotic Macroalgae and Halimeda Kanaloana Meadows in the Main Hawaiian Islands. Ph.D. Dissertation, University of Hawaii, Honolulu, HI, USA, August 2012. [Google Scholar]
- Meirelles, P.M.; Amado-Filho, G.M.; Pereira-Filho, G.H.; Pinheiro, H.T.; De Moura, R.L.; Joyeux, J.C.; Thompson, F.L. Baseline assessment of mesophotic reefs of the Vitória-Trindade Seamount Chain based on water quality, microbial diversity, benthic cover and fish biomass data. PloS ONE 2015, 10, e0130084. [Google Scholar] [CrossRef]
- Soares, M.D.O.; Tavares, T.C.L.; Carneiro, P.B.D.M. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Divers. Distrib. 2018, 25, 255–268. [Google Scholar]
- García-Sais, J.R.; Castro-Gomez, R.L.; Sabater-Clavell, J.; Esteves, R.; Williams, S.; Carlo, M. Mesophotic Benthic Seascape and Associated Marine Communities at Abrir La Sierra, Puerto Rico; Draft Final Report NOAA Grant FNA07NMF4410117; Mesophotic.org: Lajas, PR, USA, 2010. [Google Scholar]
- Costa, B.; Kendall, M.S.; Parrish, F.A.; Rooney, J.; Boland, R.C.; Chow, M.; Lecky, J.; Montgomery, A.; Spalding, H. Identifying suitable locations for mesophotic hard corals offshore of Maui, Hawai’i. PLoS ONE 2015, 10, e0130285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesser, M.P.; Slattery, M.; Leichter, J.J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 2009, 375, 1–8. [Google Scholar] [CrossRef]
- Dubinsky, Z.; Falkowski, P. Light as a source of information and energy in zooxanthellate corals. In Coral Reefs: An Ecosystem in Transition; Dubinsky, Z., Stambler, N., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 107–118. [Google Scholar]
- Enríquez, S.; Méndez, E.R.; Hoegh-Guldberg, O.; Iglesias-Prieto, R. Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc. R. Soc. B Biol. Sci. 2017, 284, 20161667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamir, R.; Eyal, G.; Kramer, N.; Laverick, J.H.; Loya, Y. Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere 2019, 10, e02839. [Google Scholar] [CrossRef] [Green Version]
- Turak, E.; DeVantier, L. Reef-building corals of the upper mesophotic zone of the central Indo-west Pacific. In Mesophotic Coral Ecosystems; Loya, Y., Puglise, K.A., Bridge, T.C.L., Eds.; Springer: New York, NY, USA, 2019; pp. 621–651. [Google Scholar]
- Pérez-Castro, M.Á.; Schubert, N.; De Oca, G.A.M.; Leyte-Morales, G.E.; Eyal, G.; Hinojosa-Arango, G. Mesophotic Coral Ecosystems in the Eastern Tropical Pacific: The current state of knowledge and the spatial variability of their depth boundaries. Sci. Total Environ. 2022, 806, 150576. [Google Scholar] [CrossRef]
- Glynn, P.W.; Leyte- Morales, G.E. Coral reefs of Huatulco, west México: Reef development in upwelling Gulf of Tehuantepec. Rev. Biol. Trop. 1997, 45, 1033–1048. [Google Scholar]
- Reyes-Bonilla, H.R.; López-Pérez, A. Biogeografía de los corales pétreos (Scleractinia) del Pacífico de México. Cienc. Ma. 1998, 24, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.B.; Maté, J.L.; Gyory, J. Thermal Refuges and Refugia for Stony Corals in the Eastern Tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World; Glynn, P.W., Manzello, D.P., Enochs, I.C., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 501–515. [Google Scholar]
- Chapa-Balcorta, C.; Hernandez-Ayon, J.M.; Durazo, R.; Beier, E.; Alin, S.R.; López-Pérez, A. Influence of post-Tehuano oceanographic processes in the dynamics of the CO2 system in the Gulf of Tehuantepec, Mexico. J. Geophys. Res. Oceans 2015, 120, 7752–7770. [Google Scholar] [CrossRef]
- Garciía-Reyes, M.; Largier, J.L. Seasonality of coastal upwelling off central and northern California: New insights, including temporal and spatial variability. J. Geophys. Res. Oceans 2012, 117, C03028. [Google Scholar] [CrossRef]
- Abeytia, R.; Guzmán, H.M.; Breedy, O. Species composition and bathymetric distribution of gorgonians (Anthozoa: Octocorallia) on the Southern Mexican Pacific coast. Rev. Biol. Trop. 2013, 61, 1157–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojeda, C.J.N. Puerto Ángel (Oaxaca en México) en la economía-mundo: Una primera propuesta metodológica que busca el desarrollo regional. In Desigualdad Socio-Espacial, Innovación Tecnológica y Procesos Urbanos; Universidad Nacional Autónoma de México y Asociación Mexicana de Ciencias para el Desarrollo Regional, A.C., Ed.; UNAM: Ciudad de México, México, 2019; Volume 3. [Google Scholar]
- Morel, A.; Gentili, B.; Claustre, H.; Babin, M.; Bricaud, A.; Ras, J.; Tièche, F. Optical properties of the “clearest” natural waters. Limnol. Oceanogr. 2007, 52, 217–229. [Google Scholar] [CrossRef]
- Wang, M.; Son, S.; Shi, W. Evaluation of MODIS SWIR and NIR–SWIR atmospheric correction algorithm using SeaBASS data. Remote Sens. Environ. 2009, 113, 635–644. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- AlgaeBase. Available online: https://www.algaebase.org (accessed on 23 May 2022).
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E., Ltd.: Plymouth, UK, 2001. [Google Scholar]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Anderson, M.J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 7 October 2022).
- Oksanen, J. Vegan: Community Ecology Package, R Package Version 1.8-5. 2007. Available online: http://www.cran.r-project.org (accessed on 7 October 2022).
- Nichol, S.; Huang, Z.; Howard, F.; Porter-Smith, R.; Lucieer, V.; Barrett, N. Geomorphological Classification of Reefs—Draft Framework for an Australian Standard; Report to the National Environmental Science Program; Marine Biodiversity Hub: Geoscience, Australia, 2016; 27p. [Google Scholar]
- INEGI. Available online: https://www.inegi.org.mx/contenidos/temas/relieve/submarino/doc/glosa_relv_sub.pdf (accessed on 25 March 2022).
- Kahng, S.E.; Garcia-Sais, J.R.; Spalding, H.L.; Brokovich, E.; Wagner, D.; Weil, E.; Toonen, R.J. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 2010, 29, 255–275. [Google Scholar] [CrossRef]
- Morgan, K.M.; Perry, C.T.; Smithers, S.G.; Johnson, J.A.; Daniell, J.J. Evidence of extensive reef development and high coral cover in nearshore environments: Implications for understanding coral adaptation in turbid settings. Sci. Rep. 2016, 6, 29616. [Google Scholar] [CrossRef]
- López-Londoño, T.; Gómez-Campo, K.; Hernández-Pech, X.; Enríquez, S.; Iglesias-Prieto, R. Photosynthetic usable energy explains vertical patterns of biodiversity in zooxanthellate corals. Sci. Rep. 2022, 12, 20821. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in Tropical Rain Forests and Coral Reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Dial, R.; Roughgarden, J. Theory of marine communities: The intermediate disturbance hypothesis. Ecology 1988, 79, 1412–1424. [Google Scholar] [CrossRef]
- Lesser, M.P.; Slattery, M.; Mobley, C.D. Biodiversity and functional ecology of mesophotic coral reefs. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 71. [Google Scholar] [CrossRef]
- The Pacific Coast of Mexico. Available online: https://www.tomzap.com/prison_p.html (accessed on 27 February 2023).
- D.O.F. Norma Oficial Mexicana NOM-059-ECOL-2001, Protección Ambiental-Especies Nativas de México de Flora y Fauna Silvestres-Categorías de Riesgo y Especificaciones Para su Inclusión, Exclusión o Cambio-Lista de Especies en Riesgo. Available online: https://dof.gob.mx/nota_detalle.php?codigo=735036&fecha=06/03/2002#gsc.tab=0 (accessed on 21 March 2023).
- D.O.F. Decreto Por el Que se Declara Área Natural Protegida, con el Carácter de Parque Nacional, la Región Conocida Como Huatulco, en el Estado de Oaxaca, con una Superficie Total de 11,980-98-00 Hectáreas. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=4888031&fecha=24/07/1998#gsc.tab=0 (accessed on 21 March 2023).
- Eyal, G.; Tamir, R.; Kramer, N.; Eyal-Shaham, L.; Loya, Y. The red sea: Israel. In Mesophotic Coral Ecosystems; Springer: Cham, Switzerland, 2019; pp. 199–214. [Google Scholar] [CrossRef]
- Laverick, J.H.; Andradi-Brown, D.A.; Rogers, A.D. Using light-dependent scleractinia to define the upper boundary of mesophotic coral ecosystems on the reefs of Utila, Honduras. PLoS ONE 2017, 12, e0183075. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.A.; Andradi-Brown, D.A.; Gori, A.; Bongaerts, P.; Burdett, H.L.; Ferrier-Pagès, C.; Voolstra, C.R.; Weinstein, D.K.; Bridge, T.C.L.; Costantini, F.; et al. Key Questions for Research and Conservation of Mesophotic Coral Ecosystems and Temperate Mesophotic Ecosystems. In Mesophotic Coral Ecosystems. Coral Reefs of the World; Loya, Y., Puglise, K., Bridge, T., Eds.; Springer: Cham, Switzerland, 2019; Volume 12, pp. 989–1003. [Google Scholar] [CrossRef]
- Littler, M.M.; Littler, D.S. The Nature of Crustose Coralline Algae and Their Interactions on Reefs. Res. Discov. 2013, 199, 200–212. [Google Scholar]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.J.; Weeks, S.; Mumby, P.J. Remote sensing of coral reefs for monitoring and management: A review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.P.; Weidemann, A.; Kindle, J.; Arnone, R.; Carder, K.L.; Davis, C. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. J. Geophys. Res. Oceans 2007, 112, C03009. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Prieto, R.; Beltrán, V.H.; LaJeunesse, T.C.; Reyes-Bonilla, H.; Thomé, P.E. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc. R. Soc. B Biol. Sci. 2004, 111, 1757–1763. [Google Scholar] [CrossRef] [Green Version]
- Rees, M.J.; Jordan, A.; Price, O.F.; Coleman, M.A.; Davis, A.R. Abiotic surrogates for temperate rocky reef biodiversity: Implications for marine protected areas. Divers. Distrib. 2014, 20, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Lesser, M.P.; Curtis, D.M.; John, D.H.; Slattery, M. Incident light on mesophotic corals is constrained by reef topography and colony morphology. Mar. Ecol. Prog. Ser. 2021, 670, 49–60. [Google Scholar] [CrossRef]
- Cortés, J. Isla del Coco, Costa Rica, Eastern Tropical Pacific. In Mesophotic Coral Ecosystems. Coral Reefs of the World; Loya, Y., Puglise, K., Bridge, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 12, pp. 465–475. [Google Scholar] [CrossRef]
Predictor | Sum of Squares | df | R2 | F | p |
---|---|---|---|---|---|
Depth = D | 0.616 | 1 | 0.12 | 4.36 | 0.001 |
Location = L | 0.376 | 1 | 0.077 | 2.66 | 0.006 |
Slope-grade = S | 1.207 | 3 | 0.247 | 2.85 | 0.001 |
D × L | 0.127 | 1 | 0.026 | 0.90 | 0.565 |
D × S | 0.286 | 2 | 0.058 | 1.01 | 0.439 |
L × S | 0.297 | 2 | 0.061 | 1.05 | 0.370 |
Residual | 1.977 | 14 | 0.404 | ||
Total | 4.887 | 24 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Castro, M.Á.; Eyal, G.; Leyte-Morales, G.E.; Hinojosa-Arango, G.; Enríquez, S. Benthic Characterization of Mesophotic Communities Based on Optical Depths in the Southern Mexican Pacific Coast (Oaxaca). Diversity 2023, 15, 531. https://doi.org/10.3390/d15040531
Pérez-Castro MÁ, Eyal G, Leyte-Morales GE, Hinojosa-Arango G, Enríquez S. Benthic Characterization of Mesophotic Communities Based on Optical Depths in the Southern Mexican Pacific Coast (Oaxaca). Diversity. 2023; 15(4):531. https://doi.org/10.3390/d15040531
Chicago/Turabian StylePérez-Castro, Miguel Ángel, Gal Eyal, Gerardo Esteban Leyte-Morales, Gustavo Hinojosa-Arango, and Susana Enríquez. 2023. "Benthic Characterization of Mesophotic Communities Based on Optical Depths in the Southern Mexican Pacific Coast (Oaxaca)" Diversity 15, no. 4: 531. https://doi.org/10.3390/d15040531
APA StylePérez-Castro, M. Á., Eyal, G., Leyte-Morales, G. E., Hinojosa-Arango, G., & Enríquez, S. (2023). Benthic Characterization of Mesophotic Communities Based on Optical Depths in the Southern Mexican Pacific Coast (Oaxaca). Diversity, 15(4), 531. https://doi.org/10.3390/d15040531