Spatiotemporal Changes in the Watershed Ecosystem Services Supply and Demand Relationships in the Eastern Margin of the Qinghai-Tibetan Plateau
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Research Framework
2.3. Data Sources and Processing
2.4. Quantification of ESs Supply and Demand
2.4.1. Water Yield
2.4.2. Soil Conservation
2.4.3. Food Provision
2.5. Relationship between ESs Supply and Demand
2.6. ESs Supply and Demand Trade-Off and Synergy
3. Results and Analysis
3.1. Spatial Distribution of the ESs Supply and Demand
3.2. Match and Mismatch between ESs Supply and Demand
3.3. ESs Trade-Off and Synergy
3.4. The Relationship between the Trade-Off Intensity and the Supply–Demand Ratio of the Watershed ESs
4. Discussion
4.1. Implications of ESs Supply and Demand Relationships
4.2. Governance Suggestions Based on ESs Supply and Demand Changes
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenbergeret, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- MA (Millennium Ecosystem Assessment). Ecosystems and Human Wellbeing: Synthesis; Island Press: Washington, DC, USA, 2005; pp. 136–139. [Google Scholar]
- Nassl, M.; Löffler, J. Ecosystem services in coupled social-ecological systems: Closing the cycle of service provision and societal feedback. Ambio 2015, 44, 737–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, I.; Drakou, E.G.; Martín-Lopez, B.; McPhearson, T.; Boyanova, K.; et al. A blueprint for mapping and modelling ecosystem services. Ecosyst. Serv. 2013, 4, 4–14. [Google Scholar] [CrossRef]
- Bastian, O.; Syrbe, R.U.; Rosenberg, M.; Rahe, D.; Grunewald, K. The five pillar EPPS framework for quantifying, mapping and managing ecosystem services. Ecosyst. Serv. 2013, 4, 15–24. [Google Scholar] [CrossRef]
- Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Chen, J.Y.; Jiang, B.; Bai, Y.; Xu, X.B.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef]
- Guo, C.Q.; Xu, X.B.; Shu, Q. A review on the assessment methods of supply and demand of ecosystem services. Chin. J. Ecol. 2020, 39, 2086–2096. (In Chinese) [Google Scholar]
- Rees, W.E. Ecological Footprints and Appropriated Carrying Capacity: What Urban Economics Leaves Out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Belt, M.V.D. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Turner, R.K.; Paavola, J.; Cooper, P.; Farber, S.; Jessamy, V.; Georgiouet, S. Valuing nature: Lessons learned and future research directions. Ecol. Econ. 2003, 46, 493–510. [Google Scholar] [CrossRef] [Green Version]
- Schulp, C.J.E.; Lautenbach, S.; Verburg, P.H. Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecol. Indic. 2014, 36, 131–141. [Google Scholar] [CrossRef]
- Wolff, S.; Schulp, C.J.E.; Kastner, T.; Verburg, P.H. Quantifying spatial variation in ecosystem services demand: A global mapping approach. Ecol. Econ. 2017, 136, 14–29. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.N.; Ou, W.X.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- Meng, S.T.; Huang, Q.X.; Zhang, L.; He, C.Y.; Inostroza, L.; Bai, Y.S.; Yin, D. Matches and mismatches between the supply of and demand for cultural ecosystem services in rapidly urbanizing watersheds: A case study in the Guanting Reservoir basin, China. Ecosyst. Serv. 2020, 45, 101156. [Google Scholar] [CrossRef]
- Yu, H.J.; Xie, W.; Sun, L.; Wang, Y.T. Identifying the regional disparities of ecosystem services from a supply-demand perspective. Resour. Conserv. Recycl. 2021, 169, 105557. [Google Scholar] [CrossRef]
- Roces-Díaz, J.V.; Vayreda, J.; Banqué-Casanovas, M.; Díaz-Varela, E.; Bonet, J.A.; Brotons, L.; de-Miguel, S.; Herrando, S.; Martínez-Vilalta, J. The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships. Sci. Total Environ. 2018, 626, 1270–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, H.X.; Zhang, J.; Mao, D.H.; Wang, Z.M.; Qiu, Z.Q.; Yan, H.Q. Identifying spatial similarities and mismatches between supply and demand of ecosystem services for sustainable Northeast China. Ecol. Indic. 2022, 134, 108501. [Google Scholar] [CrossRef]
- Mashizi, A.K.; Sharafatmandrad, M. Investigating tradeoffs between supply, use and demand of ecosystem services and their effective drivers for sustainable environmental management. J. Environ. Manag. 2021, 289, 112534. [Google Scholar] [CrossRef]
- Vrebos, D.; Staes, J.; Vandenbroucke, T.; D’Haeyer, T.; Johnston, R.; Muhumuza, M.; Kasabeke, C.; Meire, P. Mapping ecosystem service flows with land cover scoring maps for data-scarce regions. Ecosyst. Serv. 2015, 13, 28–40. [Google Scholar] [CrossRef]
- Shi, Y.H.; Shi, D.H.; Zhou, L.L.; Fang, R.B. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 2020, 115, 106418. [Google Scholar] [CrossRef]
- Zhai, T.L.; Zhang, D.; Zhao, C.C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sustain. Cities Soc. 2021, 75, 103341. [Google Scholar] [CrossRef]
- Xia, F.; Yang, Y.X.; Zhang, S.Q.; Yang, Y.X.; Li, D.H.; Sun, W.; Xie, Y.J. Influencing factors of the supply-demand relationships of carbon sequestration and grain provision in China: Does land use matter the most? Sci. Total Environ. 2022, 832, 154979. [Google Scholar] [CrossRef] [PubMed]
- Hegetschweiler, K.T.; Vries, S.D.; Arnberger, A.; Bell, S.; Brennan, M.; Siter, N.; Olafsson, A.S.; Voigt, A. Linking demand and supply factors in identifying cultural ecosystem services of urban green infrastructures: A review of European studies. Urban For. Urban Green. 2017, 21, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Zhao, Z.Y.; Fu, B.J.; Ma, R.M.; Yang, Y.Y.; Lü, Y.H.; Wu, X. Identifying ecological security patterns based on the supply, demand and sensitivity of ecosystem service: A case study in the Yellow River Basin, China. J. Environ. Manag. 2022, 315, 115158. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.H.; Peng, J.; Dong, J.Q.; Liu, Y.X.; Liu, Q.Y.; Lyu, D.; Qiao, R.L.; Zhang, Z.M. Spatial correlation between the changes of ecosystem service supply and demand: An ecological zoning approach. Landsc. Urban Plan. 2022, 217, 104258. [Google Scholar] [CrossRef]
- Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Gómez-Baggethun, E. Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Mehring, M.; Ott, E.; Hummel, D. Ecosystem services supply and demand assessment: Why social-ecological dynamics matter. Ecosyst. Serv. 2018, 30, 124–125. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; García-Llorente, M.; Norstrm, A.; Meacham, M.; Castro, A.J. Integrating supply and demand in ecosystem service bundles characterization across Mediterranean transformed landscapes. Landsc. Ecol. 2019, 1, 1–15. [Google Scholar] [CrossRef]
- Wei, H.J.; Fan, W.G.; Wang, X.C.; Lu, N.C.; Dong, X.B.; Zhao, Y.N.; Ya, X.J.; Zhao, Y.F. Integrating supply and social demand in ecosystem services assessment: A review. Ecosyst. Serv. 2017, 25, 15–27. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Kang, Y.; Cheng, C.X.; Liu, X.H.; Zhang, F.; Li, Z.H.; Lu, S.Q. An ecosystem services value assessment of land-use change in Chengdu: Based on a modification of scarcity factor. Phys. Chem. Earth 2019, 110, 157–167. [Google Scholar] [CrossRef]
- Morri, E.; Pruscini, F.; Scolozzi, R.; Santolini, R. A forest ecosystem services evaluation at the river basin scale: Supply and demand between coastal areas and upstream lands. Ecol. Indic. 2014, 37, 210–219. [Google Scholar] [CrossRef]
- Castillo-Eguskitza, N.; Martín-López, B.; Onaindia, M. A comprehensive assessment of ecosystem services: Integrating supply, demand and interest in the Urdaibai Biosphere Reserve. Ecol. Indic. 2018, 93, 1176–1189. [Google Scholar] [CrossRef]
- Hainz-Renetzeder, C.; Schneidergruber, A.; Kuttner, M.; Wrbka, T. Assessing the potential supply of landscape services to support ecological restoration of degraded landscapes: A case study in the Austrian-Hungarian trans-boundary region of Lake Neusiedl. Ecol. Model. 2015, 295, 196–206. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.L.; Zhao, S.; Hou, X.Y.; Xu, J.W.; Dong, S.K.; Liu, G.H. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef]
- Tratalos, J.A.; Haines-Young, R.; Potschin, M.; Fish, R.; Church, A. Cultural ecosystem services in the UK: Lessons on designing indicators to inform management and policy. Ecol. Indic. 2016, 61, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.G.; Yi, Y.J.; Liu, H.X.; Xu, Q.; Yang, Z.F. The relationship between ecosystem service supply and demand in plain areas undergoing urbanization: A case study of China’s Baiyangdian Basin. J. Environ. Manag. 2021, 289, 112492. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, T.L.; Lin, Y.F.; Kong, X.S.; He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 2019, 657, 781–791. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Li, J.; Liu, J.Y.; Cuan, Y.D.; Zhang, C. Integrating supply and demand in cultural ecosystem services assessment: A case study of Cuihua Mountain. Environ. Sci. Pollut. Res. 2019, 26, 6065–6076. [Google Scholar] [CrossRef]
- Martínez-López, J.; Bagstad, K.J.; Balbi, S.; Magrach, A.; Voigt, B.; Athanasiadis, I.; Pascual, M.; Willcock, S.; Villa, F. Towards globally customizable ecosystem service models. Sci. Total Environ. 2018, 650, 2325–2336. [Google Scholar] [CrossRef] [PubMed]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.P.; Beard, T.D.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Maud, A.M.; Lamarque, P.; Martín-López, B.; Crouzat, E.; Gos, P.; Byczek, C.; Lavorel, S. An interdisciplinary methodological guide for quantifying associations between ecosystem services. Glob. Environ. Change 2014, 28, 298–308. [Google Scholar]
- Zheng, H.; Wang, L.J.; Wu, T. Coordinating ecosystem service trade-offs to achieve win–win outcomes: A review of the approaches. J. Environ. Sci. 2019, 82, 103–112. [Google Scholar] [CrossRef]
- Stosch, K.C.; Quilliam, R.S.; Bunnefeld, N.; Oliver, D.M. Quantifying stakeholder understanding of an ecosystem service trade-off. Sci. Total Environ. 2019, 651, 2524–2534. [Google Scholar] [CrossRef] [PubMed]
- Holting, L.; Beckmann, M.; Volk, M.; Cord, A.F. Multifunctionality assessments: More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecol. Indic. 2019, 103, 226–235. [Google Scholar] [CrossRef]
- Dittrich, A.; Seppelt, R.; Vaclavik, T.; Corder, A.F. Integrating ecosystem service bundles and socio-environmental conditions: A national scale analysis from Germany. Ecosyst. Serv. 2017, 28, 273–282. [Google Scholar] [CrossRef]
- Wei, W.; Nan, S.X.; Xie, B.B.; Liu, C.F.; Zhou, J.J.; Liu, C.Y. The spatial-temporal changes of supply-demand of ecosystem services and ecological compensation: A case study of Hexi Corridor, Northwest China. Ecol. Eng. 2023, 187, 106861. [Google Scholar] [CrossRef]
- Vallet, A.; Locatelli, B.; Levrel, H.; Wunder, S.; Seppelt, R.; Scholes, R.J.; Oszwald, J. Relationships between ecosystem services: Comparing methods for assessing tradeoffs and synergies. Ecol. Econ. 2018, 150, 96–106. [Google Scholar] [CrossRef]
- Gong, J.R.; Shi, J.Y.; Zhu, C.C.; Li, X.B.; Zhang, Z.H.; Zhang, W.Y.; Li, Y.; Hu, Y.X. Accounting for land use in an analysis of the spatial and temporal characteristics of ecosystem services supply and demand in a desert steppe of Inner Mongolia, China. Ecol. Indic. 2022, 144, 109567. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.K.; Zhang, J.J.; Huang, Y.H. Investigating the trade-offs between the supply and demand for ecosystem services for regional spatial management. J. Environ. Manag. 2023, 325, 116591. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Crittenden, J.C.; Li, F.; Lu, Z.M.; Dou, X.L. Urban expansion simulation and the spatiotemporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci. Total Environ. 2018, 622–623, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Cortinovis, C.; Geneletti, D. A performance-based planning approach integrating supply and demand of urban ecosystem services. Landsc. Urban Plan. 2020, 201, 103842. [Google Scholar] [CrossRef]
- Xu, C.X.; Gong, J.; Yan, L.L.; Gao, B.L.; Li, Y. Spatiotemporal changes of supply and demand risk of soil conservation services in Bailongjiang watershed, Gansu Province. Chin. J. Ecol. 2021, 40, 1397–1408. (In Chinese) [Google Scholar]
- Yang, Q.; Wang, G.F.; Yang, X.D.; Ding, W.C.; Gao, Y.L. Analysis on disaster-inducing conditions and development characteristics of Debris Flows in Zhouqu of Bailong River. Urban Geol. 2022, 17, 43–49. (In Chinese) [Google Scholar]
- Gong, J.; Jin, T.T.; Liu, D.Q.; Zhu, Y.H.; Yan, L.L. Are ecosystem service bundles useful for mountainous landscape function zoning and management? A case study of Bailongjiang watershed in western China. Ecol. Indic. 2022, 134, 108495. [Google Scholar] [CrossRef]
- Guan, Q.C.; Hao, J.M.; Ren, G.P.; Li, M.; Chen, A.Q.; Duan, W.K.; Chen, H. Ecological indexes for the analysis of the spatial–temporal characteristics of ecosystem service supply and demand: A case study of the major grain-producing regions in Quzhou, China. Ecol. Indic. 2020, 108, 105748. [Google Scholar] [CrossRef]
- Boesing, A.L.; Prist, P.R.; Barreto, J.; Hohlenwerger, C.; Marson, M.; Rhodes, J.R.; Romanini, E.; Tambosi, L.R.; Vidal, M.; Metzger, J.P. Ecosystem services at risk: Integrating spatiotemporal dynamics of supply and demand to promote long-term provision. One Earth 2020, 3, 704–713. [Google Scholar] [CrossRef]
- Sun, Y.X.; Liu, S.L.; Dong, Y.H.; An, Y.; Shi, F.N.; Dong, S.K.; Liu, G.H. Spatiotemporal evolution scenarios and the coupling analysis of ecosystem services with land use change in China. Sci. Total Environ. 2019, 681, 211–225. [Google Scholar] [CrossRef]
- Wei, Y.P.; Wu, S.L.; Jiang, C.; Feng, X. Managing supply and demand of ecosystem services in dryland catchments. Curr. Opin. Environ. Sustain. 2020, 48, 10–16. [Google Scholar] [CrossRef]
- Li, Z.Y.; Li, S.P.; Cao, Y.G.; Wang, S.F.; Liu, S.H.; Zhang, Z.J. Supply and demand of ecosystem services: Primary connotation and practical application. J. Agric. Resour. Environ. 2022, 39, 456–466. (In Chinese) [Google Scholar]
- Wu, J.; Guo, X.; Zhu, Q.; Guo, J.X.; Han, Y.; Zhong, L.; Liu, S.Y. Threshold effects and supply-demand ratios should be considered in the mechanisms driving ecosystem services. Ecol. Indic. 2022, 142, 109281. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.E.; Duan, B.L.; Hu, X.P.; Cherubini, F. Coupling trade-offs and supply-demand of ecosystem services (ES): A new opportunity for ES management. Geogr. Sustain. 2021, 2, 275–280. [Google Scholar] [CrossRef]
- Li, B.; Chen, N.; Wang, Y.; Wang, W. Spatiotemporal quantification of the trade-offs and synergies among ecosystem services based on grid-cells: A case study of Guanzhong Basin, NW China. Ecol. Indic. 2018, 94, 246–253. [Google Scholar] [CrossRef]
- Wang, L.J.; Zheng, H.; Wen, Z.; Liu, L.; Robinson, B.E.; Li, R.; Li, C.; Kong, L. Ecosystem service synergies/trade-offs informing the supply-demand match of ecosystem services: Framework and application. Ecosyst. Serv. 2019, 37, 100939. [Google Scholar] [CrossRef]
- Xie, Y.C.; Gong, J.; Zhang, S.X.; Ma, X.C.; Hu, B.Q. Spatiotemporal Changes of Landscape Biodiversity Based on InVEST Model and Remote Sensing Technology in the Bailong River Watershed. Sci. Geogr. Sin. 2018, 38, 979–986. (In Chinese) [Google Scholar]
- Bai, S.B.; Wang, J.; Zhang, Z.G.; Cheng, C. Combined landslide susceptibility mapping after Wenchuan earthquake at the Zhouqu segment in the Bailongjiang Basin, China. Catena 2012, 99, 18–25. [Google Scholar] [CrossRef]
- He, J.M.; Yan, X.Y.; Li, X.Q. Precipitation characteristics in flood season from 2015 to 2018 in Bailong River Basin cross Gansu Province. J. Shaanxi Meteorol. 2021, 3, 29–35. (In Chinese) [Google Scholar]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.8.9. post1+ug.G48b9aa8 User’s Guide; The Natural Capital Project of Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington County, VA, USA; World Wildlife Fund: Gland, Switzerland, 2020. [Google Scholar]
- González-García, A.; Palomo, I.; González, J.A.; López, C.A.; Montes, C. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy 2020, 94, 104493. [Google Scholar] [CrossRef]
- Kareiva, P.; Tallis, H.; Ricketts, T.H.; Daily, G.C.; Polasky, S. Natural Capital: Theory and Practice of Mapping Ecosystem Services; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Liu, D.Q.; Cao, E.J.; Zhang, J.X.; Gong, J.; Yan, L.L. Spatiotemporal pattern of water conservation and its influencing factors in Bailongjiang Watershed of Gansu. J. Nat. Resour. 2020, 35, 1728–1743. (In Chinese) [Google Scholar]
- Sun, Y.P.; Chen, W.; Zhang, S.P.; Xu, Q. Population spatialization research based on settlements density and its application in Jiuzhaigou, Sichuan Ms7.0 earthquake. China Earthq. Eng. J. 2018, 40, 174–179. (In Chinese) [Google Scholar]
- Liu, L.C.; Liu, C.F.; Wang, C.; Li, P.J. Supply and demand matching of ecosystem services in loess hilly region: A case study of Lanzhou. Acta Geogr. Sin. 2019, 74, 1921–1937. (In Chinese) [Google Scholar]
- Zhao, X.Q.; Shi, X.Q.; Li, Y.H.; Li, Y.M.; Huang, P. Spatiotemporal pattern and functional zoning of ecosystem services in the karst mountainous areas of southeastern Yunnan. Acta Geogr. Sin. 2022, 77, 736–756. (In Chinese) [Google Scholar]
- Ketema, H.; Wei, W.; Legesse, A.; Wolde, Z.; Endalamaw, T. Quantifying ecosystem service supply-demand relationship and its link with smallholder farmers’ well-being in contrasting agroecological zones of the East African Rift. Glob. Ecol. Conserv. 2021, 31, e01829. [Google Scholar] [CrossRef]
- Li, J.H.; Jiang, H.W.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.W.; Liu, G.; Xu, J. Indicators for spatial–temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Zhai, T.L.; Wang, J.; Jin, Z.F.; Qi, Y.; Fang, Y.; Liu, J.J. Did improvements of ecosystem services supply-demand imbalance change environmental spatial injustices? Ecol. Indic. 2020, 111, 106068. [Google Scholar] [CrossRef]
- Bradford, J.B.; D’Amato, A.W. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 2012, 10, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Zhao, W.W.; Hu, X.P.; Liu, Y.; Daryanto, S.; Cherubini, F. Trading-off ecosystem services for better ecological restoration: A case study in the Loess Plateau of China. J. Clean. Prod. 2020, 257, 120469. [Google Scholar] [CrossRef]
- Liang, J.; Li, S.; Li, X.D.; Li, X.; Liu, Q.; Meng, Q.F.; Lin, A.Q.; Li, J.J. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. J. Clean. Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
- Binder, M.; Coad, A. From average joe’s happiness to miserable jane and cheerful john: Using quantile regressions to analyze the full subjective well-being distribution. J. Econ. Behav. Organ. 2011, 79, 275–290. [Google Scholar] [CrossRef]
- Meng, L.; Wang, K.; Maity, A.; Staicu, A.M. Inference in functional linear quantile regression. J. Multivar. Anal. 2022, 190, 104985. [Google Scholar]
- Gong, J.; Zhao, C.X.; Xie, Y.C.; Gao, Y.J. Ecological risk assessment and its management of Bailongjiang watershed, southern Gansu based on landscape pattern. Chin. J. Appl. Ecol. 2014, 25, 2041–2048. (In Chinese) [Google Scholar]
- Yee, S.H.; Paulukonis, E.; Simmons, C.; Russell, M.; Fulford, R.; Harwell, L.; Smith, L.M. Projecting effects of land use change on human well-being through changes in ecosystem services. Ecol. Model. 2021, 440, 109358. [Google Scholar] [CrossRef]
- Liu, D.Q.; Zhang, J.X.; Gong, J.; Cao, E.J. Ecological function zoning in Bailongjiang Watershed of Gansu based on production—Living—Ecological function clusters. Chin. J. Ecol. 2019, 38, 1258–1266. (In Chinese) [Google Scholar]
- Zhou, L.L.; Zhang, H.Z.; Bi, G.H.; Su, K.C.; Wang, L.; Chen, H.J.; Yang, Q.Y. Multiscale perspective research on the evolution characteristics of the ecosystem services supply-demand relationship in the Chongqing section of the three gorges reservoir area. Ecol. Indic. 2022, 142, 109227. [Google Scholar] [CrossRef]
ESs | ESs Supply | ESs Demand | ESDR | ||||||
---|---|---|---|---|---|---|---|---|---|
2002 | 2010 | 2018 | 2002 | 2010 | 2018 | 2002 | 2010 | 2018 | |
Water yield (×109 m3) | 6.03 | 6.49 | 8.07 | 0.21 | 0.41 | 0.49 | 0.91 | 0.90 | 1.07 |
Soil conservation (×108 t) | 4.53 | 7.73 | 9.18 | 0.41 | 0.85 | 1.02 | 0.05 | 0.05 | 0.05 |
Food provision (×106 MKJ) | 2.43 | 4.10 | 4.73 | 4.15 | 4.00 | 3.16 | −0.03 | −0.03 | −0.04 |
Year | Index | WY-SC | WY-FP | FP-SC |
---|---|---|---|---|
2002 | RMSD range | [0–0.707] | [0–0.707] | [0–0.686] |
RMSD mean | 0.302 | 0.326 | 0.035 | |
Correlation coefficients | 0.291 ** | −0.396 ** | −0.261 ** | |
2010 | RMSD range | [0–0.705] | [0–0.707] | [0–0.703] |
RMSD mean | 0.308 | 0.329 | 0.033 | |
Correlation coefficients | 0.463 ** | −0.351 ** | −0.129 ** | |
2018 | RMSD range | [0–0.707] | [0–0.707] | [0–0.707] |
RMSD mean | 0.366 | 0.391 | 0.036 | |
Correlation coefficients | 0.379 ** | −0.293 ** | −0.180 ** |
ESDR Quantiles | AreaWY>FP | AreaFP>WY | AreaSC>FP | AreaFP>SC | ||||
---|---|---|---|---|---|---|---|---|
ESDRWY | ESDRFP | ESDRWY | ESDRFP | ESDRSC | ESDRFP | ESDRSC | ESDRFP | |
10% | 0.329 ** | 0.042 | −1.894 | −0.351 | −0.768 ** | 0.340 | −0.329 | 0.469 |
30% | −0.028 | 0.102 ** | −2.685 ** | −0.098 | −0.626 ** | 0.621 * | −0.238 | 0.112 |
50% | −0.277 ** | 0.056 ** | −2.375 ** | −0.025 | −0.415 ** | 0.371 ** | −0.073 | 0.001 |
70% | −0.434 ** | 0.005 | −1.885 ** | 0.000 | −0.286 ** | 0.049 | 0.166 | 0.000 |
90% | −1.051 ** | 0.000 | −1.444 ** | 0.000 | −0.326 ** | 0.003 | −0.232 | 0.001 |
Social-Ecological Factors | AreaWY>FP | AreaFP>WY | AreaSC>FP | AreaFP>SC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WY | FP | RMSD | WY | FP | RMSD | SC | FP | RMSD | SC | FP | RMSD | |
Temperature | 0.077 * | 0.037 | 0.260 ** | 0.162 | 0.017 | 0.184 | −0.071* | 0.017 | 0.264 ** | 0.211 | 0.523 ** | 0.307 |
Precipitation | −0.120 ** | 0.021 | 0.575 ** | −0.238 | −0.028 | 0.364 ** | −0.130 ** | 0.017 | 0.258 ** | 0.005 | 0.434 ** | 0.371 ** |
Elevation | −0.094 * | −0.041 | −0.187 ** | −0.188 | −0.020 | −0.136 | 0.068 | −0.014 | −0.237 ** | −0.206 | −0.017 | 0.068 |
Slope | −0.038 | 0.083 | 0.413 ** | −0.060 | −0.002 | −0.269 ** | −0.254 ** | 0.037 | 0.697 ** | 0.226 | 0.420 | 0.354 * |
NDVI | 0.031 | 0.113 ** | 0.532 ** | −0.074 | 0.013 | 0.005 | −0.210 ** | −0.016 | 0.528 ** | 0.010 | −0.151 | 0.274 |
Economic density | 0.083 * | −0.005 | 0.184 ** | 0.082 | −0.055 | 0.369 ** | 0.072 * | 0.055 | 0.172 ** | −0.028 | 0.650 ** | 0.510 ** |
Population density | 0.106 ** | −0.049 | −0.192 ** | 0.006 | −0.084 | −0.126 | 0.150 ** | −0.009 | −0.149 ** | 0.050 | 0.471 ** | 0.341 * |
Farmland Proportion | 0.103 ** | −0.051 | −0.215 ** | 0.212 * | 0.005 | −0.229 * | 0.140 * | −0.037 | −0.156 ** | −0.055 | 0.360 * | 0.066 |
Forestland Proportion | −0.039 | 0.126 ** | 0.339 ** | −0.044 | −0.061 | −0.186 | −0.194 ** | 0.039 | 0.419 ** | 0.007 | 0.218 | 0.255 |
Grassland Proportion | 0.085 * | −0.074 * | −0.215 ** | −0.173 | 0.023 | 0.321 ** | 0.061 | −0.015 | −0.065 | 0.195 | 0.309 | 0.278 |
Water area Proportion | 0.092 * | −0.006 | −0.076 * | 0.177 | 0.049 | −0.269 ** | −0.007 | 0.007 | −0.040 | 0.086 | 0.141 | 0.022 |
Construction land Proportion | 0.143 ** | 0.037 | −0.153 ** | 0.032 | −0.184 | −0.033 | 0.085 * | −0.013 | −0.126 ** | 0.104 | 0.214 | 0.018 |
Unused land Proportion | −0.042 | −0.062 | −0.111 ** | −0.199 * | −0.087 | −0.081 | −0.002 | −0.036 | −0.050 | 0.142 | 0.054 | −0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, Y.; Hou, Z.; Shi, J.; Gong, J. Spatiotemporal Changes in the Watershed Ecosystem Services Supply and Demand Relationships in the Eastern Margin of the Qinghai-Tibetan Plateau. Diversity 2023, 15, 551. https://doi.org/10.3390/d15040551
Zhu Y, Wang Y, Hou Z, Shi J, Gong J. Spatiotemporal Changes in the Watershed Ecosystem Services Supply and Demand Relationships in the Eastern Margin of the Qinghai-Tibetan Plateau. Diversity. 2023; 15(4):551. https://doi.org/10.3390/d15040551
Chicago/Turabian StyleZhu, Yuehua, Yixu Wang, Zongdong Hou, Jing Shi, and Jie Gong. 2023. "Spatiotemporal Changes in the Watershed Ecosystem Services Supply and Demand Relationships in the Eastern Margin of the Qinghai-Tibetan Plateau" Diversity 15, no. 4: 551. https://doi.org/10.3390/d15040551
APA StyleZhu, Y., Wang, Y., Hou, Z., Shi, J., & Gong, J. (2023). Spatiotemporal Changes in the Watershed Ecosystem Services Supply and Demand Relationships in the Eastern Margin of the Qinghai-Tibetan Plateau. Diversity, 15(4), 551. https://doi.org/10.3390/d15040551