Zonal Patterns of Changes in the Taxonomic Composition of Culturable Microfungi Isolated from Permafrost Peatlands of the European Northeast
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Description of the Study Area
2.2. Sample Collection and Laboratory Studies
2.3. Statistical Analysis
3. Results and Discussions
3.1. Taxonomic Diversity
3.2. Diversity of Fungi in Active and Permafrost Layers
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, X.; Abakumov, E.; Chigray, S.; Saparova, S.; Polyakov, V.; Wang, W.; Wu, D.; Li, C.; Huang, Y.; Xie, X. Response of carbon and microbial properties to risk elements pollution in arctic soils. J. Hazard. Mater. 2020, 408, 124430. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Liu, T.; Chen, H.; Liu, J.; Hu, J.; Liu, L. Fungi are more sensitive than bacteria to drainage in the peatlands of the Zoige Plateau. Ecol. Indic. 2021, 124, 107367. [Google Scholar] [CrossRef]
- Lapteva, E.M.; Kovaleva, V.A.; Vinogradova, Y.A.; Kaverin, D.A.; Pastukhov, A.V. Micromycetes in peat soils of palsa mires in the forest-tundra zone. Vestn. Inst. Biol. 2017, 3, 30–36. (In Russian) [Google Scholar]
- Vinogradova, Y.A.; Lapteva, E.M.; Kovaleva, V.A.; Perminova, E.M. Profile distribution pattern of microfungi in the per-mafrost-affected peatland of forest-tundra. Mikol. Fitopatol. 2019, 53, 342–353. (In Russian) [Google Scholar]
- Vinogradova, Y.A.; Lapteva, E.M.; Kovaleva, V.A.; Perminova, E.M. Soil fungi biomass and diversity of soil microfungi in the active layer of south tundra peatlands. Mikol. Fitopatol. 2021, 55, 105–118. (In Russian) [Google Scholar]
- Andersen, R.; Chapman, S.; Artz, R. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 2013, 57, 979–994. [Google Scholar] [CrossRef]
- Sazanova, K.V. Organic Acids of Fungi and Their Ecological and Physiological Significance. Ph.D. Thesis, Saint Petersburg State University, Saint Petersburg, Russia, 2014. (In Russian). [Google Scholar]
- Fenner, N.; Ostle, N.J.; McNamara, N.; Sparks, T.; Harmens, H.; Reynolds, B.; Freeman, C. Elevated CO2 Effects on Peatland Plant Community Carbon Dynamics and DOC Production. Ecosystems 2007, 10, 635–647. [Google Scholar] [CrossRef]
- Kostadinova, N.; Tosi, S.; Spassova, B.; Angelova, M. Comparison of the oxidative stress response of two Antarctic fungi to different growth temperatures. Pol. Polar Res. 2017, 38, 393–408. [Google Scholar] [CrossRef]
- Juan-Ovejero, R.; Briones, M.; Öpik, M. Fungal diversity in peatlands and its contribution to carbon cycling. Appl. Soil Ecol. 2019, 146, 103393. [Google Scholar] [CrossRef]
- Hogg, I.D.; Cary, C.S.; Convey, P.; Newsham, K.K.; O’Donnell, A.G.; Adams, B.J.; Aislabie, J.; Frati, F.; Stevens, M.I.; Wall, D.H. Biotic interactions in Antarctic terrestrial ecosystems: Are they a factor? Soil Biol. Biochem. 2006, 38, 3035–3040. [Google Scholar] [CrossRef]
- Bell, T.H.; Callender, K.L.; Whyte, L.G.; Greer, C.W. Microbial Competition in Polar Soils: A Review of an Understudied but Potentially Important Control on Productivity. Biology 2013, 2, 533–554. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, I.; Grouzdev, D.; Sukhacheva, M.; Minayeva, T.; Sirin, A. Microbial Communities of Peaty Permafrost Tundra Soils along the Gradient of Environmental Conditions and Anthropogenic Disturbance in Pechora River Delta in the Eastern European Arctic. Diversity 2023, 15, 251. [Google Scholar] [CrossRef]
- Tosi, S.; Onofri, S.; Brusoni, M.; Zucconi, L.; Vishniac, H. Response of the Antarctic soil fungal assemblages to the experi-mental warming and reduction of UV radiation. Polar Biol. 2005, 28, 470–482. [Google Scholar] [CrossRef]
- Eichholz, I.; Huyskens-Keil, S.; Keller, A.; Ulrich, D.; Kroh, L.W.; Rohn, S. UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chem. 2011, 126, 60–64. [Google Scholar] [CrossRef]
- Villarreal, P.; Carrasco, M.; Barahona, S.; Alcaino, J.; Cifuentes, V.; Baeza, M. Tolerance to ultraviolet radiation of psychrot-olerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content. Curr. Microbiol. 2016, 72, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, T.V.; Jonasson, S.; Nichols, H.; Heywood, R.B.; Wookey, P.A. The Arctic and environmental change. Philos. Trans. Royal Soc. A 1995, 352, 259–276. [Google Scholar]
- Zucconi, L.; Pagano, S.; Fenice, M.; Selbmann, L.; Tosi, S.; Onofri, S. Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol. 1996, 16, 53–61. [Google Scholar] [CrossRef]
- Ruisi, S.; Barreca, D.; Selbmann, L.; Zucconi, L.; Onofri, S. Fungi in Antarctica. Rev. Environ. Sci. Biotechnol. 2007, 6, 127–141. [Google Scholar] [CrossRef]
- Arenz, B.E.; Blachette, R.A. Distribution and abundance of soil fungi in Antarctica at sites of the Peninsula, Ross Sea region and McMudo Dry Valleys. Soil Biol. Biochem. 2011, 43, 308–315. [Google Scholar] [CrossRef]
- Gittel, A.; Bárta, J.; Kohoutová, I.; Schnecker, J.; Wild, B.; Capek, P.; Kaiser, C.H.; Torsvik, V.; Richter, A.; Schleper, C.H.; et al. Site-and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Front. Microbiol. 2014, 5, 541. [Google Scholar] [CrossRef]
- Deng, J.; Gu, Y.; Zhang, J.; Xue, K.; Qin, Y.; Yuan, M.; Yin, H.; He, Z.; Schuur, E.A.G.; Tiedje, J.M.; et al. Shifts of tundra bacterial and archael communities along a permafrost thaw gradient in Alaska. Mol. Ecol. 2015, 24, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Yogabaanu, U.; Weber, J.F.; Convey, P.; Rizman-Idid, M.; Alias, S.A. Antimicrobial properties and the influence of tem-perature on secondary metabolite production in cold environment soil fungi. Polar Sci. 2017, 14, 60–67. [Google Scholar] [CrossRef]
- Müller, O.; Bang-Andreasen, T.; Iii, R.A.W.; Elberling, B.; Taş, N.; Kneafsey, T.; Jansson, J.K.; Øvreås, L. Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environ. Microbiol. 2018, 20, 4328–4342. [Google Scholar] [CrossRef] [PubMed]
- Ozerskaya, S.M.; Kochkina, G.A.; Ivanushkina, N.E.; Knyazeva, E.V.; Gilichinskii, D.A. The structure of micromycete com-plexes in permafrost and cryopegs of the arctic. Microbiologiya 2008, 77, 542–550. (In Russian) [Google Scholar]
- Ozerskaya, S.M.; Kochkina, G.A.; Ivanushkina, N.E.; Gilichinsky, D.A. Fungi in Permafrost. Permafrost Soils; Margesin, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 85–95. [Google Scholar]
- Zelenskaya, M.S.; Kirtsideli, I.Y.; Vlasov, D.Y.; Krylenkov, V.A.; Sokolov, V.T. Micromycetes—Biodestructors in Arctic bio-geocenoses. Probl. Reg. Ecol. 2013, 5, 135–140. (In Russian) [Google Scholar]
- Onofri, S.; Selbmann, L.; Zucconi, L.; Pagano, S. Antarctic microfungi as models for exobiology. Planet. Space Sci. 2004, 52, 229–237. [Google Scholar] [CrossRef]
- Zucconi, L.; Selbmann, L.; Buzzini, P.; Turchetti, B.; Guglielmin, M.; Frisvad, J.C.; Onofri, S. Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol. 2011, 35, 749–757. [Google Scholar] [CrossRef]
- Godinho, V.M.; Gonçalves, V.N.; Santiago, I.F.; Figueredo, H.M.; Vitoreli, G.A.; Schaefer, C.E.G.R.; Barbosa, E.C.; Oliveira, J.G.; Alves, T.M.A.; Zani, C.; et al. Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 2015, 19, 585–596. [Google Scholar] [CrossRef]
- Kochkina, G.A.; Ozerskaya, S.M.; Ivanushkina, N.E.; Chigineva, N.I.; Vasilenko, O.V.; Spirina, E.V.; Gilichinskii, D.A. Fungal diversity in the Antarctic active layer. Microbiology 2014, 83, 94–101. [Google Scholar] [CrossRef]
- Robinson, C.H.; Saunders, P.W.; Madan, N.J.; Pryce-Miller, E.J.; Pentecost, A. Does nitrogen deposition affect soil micro-fungal diversity and soil N and P dynamics in a high Arctic ecosystem? Glob. Chang. Biol. 2004, 10, 1065–1079. [Google Scholar] [CrossRef]
- Blaud, A.; Lerch, T.Z.; Phoenix, G.K.; Osborn, A.M. Arctic soil microbial diversity in a changing world. Res. Microbiol. 2015, 166, 796–813. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.N.; Montiel, P.O.; Johnstone, K. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 2000, 92, 222–229. [Google Scholar] [CrossRef]
- Onofri, S.; Fenice, M.; Cicalini, A.R.; Tosi, S.; Magrino, A.; Pagano, S.; Selbmann, L.; Zucconi, L.; Vishniac, H.S.; Ocampo-Friedmann, R.; et al. Ecology and biology of microfungi from Antarctic rocks and soils. Ital. J. Zool. 2000, 67, 163–167. [Google Scholar] [CrossRef]
- Tosi, S.; Casado, B.; Gerdol, R.; Caretta, G. Fungi isolated from Antarctic mosses. Polar Biol. 2002, 25, 262–268. [Google Scholar] [CrossRef]
- Zucconi, L.; Ripa, C.; Selbmann, L.; Onofri, S. Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol. 2002, 25, 500–505. [Google Scholar]
- Selbmann, L.; Isola, D.; Fenice, M.; Zucconi, L.; Sterflinger, K.; Onofri, S. Potential extinction of Antarctic endemic fungal species as a consequence of global warming. Sci. Total Environ. 2012, 438, 127–134. [Google Scholar] [CrossRef]
- Selbmann, L.; Grube, M.; Onofri, S.; Isola, D.; Zucconi, L. Antarctic Epilithic Lichens as Niches for Black Meristematic Fungi. Biology 2013, 2, 784–797. [Google Scholar] [CrossRef]
- Vishniac, H.S.; Onofri, S. Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica. Antonie Van. Leeuwenhoek 2003, 83, 231–233. [Google Scholar] [CrossRef]
- Tosi, S.; Kostadinova, N.; Krumova, E.; Pashova, S.; Dishliiska, V.; Spassova, B.; Vassilev, S.; Angelova, M. Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica. Polar Biol. 2010, 33, 1227–1237. [Google Scholar] [CrossRef]
- Krishnan, A.; Convey, P.; Gonzalez-Rocha, G.; Alias, S.A. Production of extracellular hydrolase enzymes by fungi from King George Island. Polar Biol. 2014, 39, 65–76. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, L.; Song, C.; Wang, X.; Ma, X.; Zhang, H.; Tan, W.; Gao, J.; Hou, A. Microbial abundance and enzymatic activity from tussock and shrub soil in permafrost peatland after 6-year warming. Ecol. Indic. 2021, 126, 107589. [Google Scholar] [CrossRef]
- Aksenov, A.S.; Shirokova, L.S.; Kisil, O.Y.; Kolesova, S.N.; Lim, A.G.; Kuzmina, D.; Pouillé, S.; Alexis, M.A.; Castrec-Rouelle, M.; Loiko, S.V.; et al. Bacterial Number and Genetic Diversity in a Permafrost Peatland (Western Siberia): Testing a Link with Organic Matter Quality and Elementary Composition of a Peat Soil Profile. Diversity 2021, 13, 328. [Google Scholar] [CrossRef]
- Thormann, M.N. The Role of Fungi in Boreal Peatlands. In Boreal Peatland Ecosystems; Wieder, R.K., Vitt, D.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 101–123. [Google Scholar]
- Asemaninejad, A.; Thorn, R.G.; Lindo, Z. Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities. Microb. Ecol. 2016, 73, 521–531. [Google Scholar] [CrossRef]
- Elliott, D.R.; Caporn, S.J.M.; Nwaishi, F.; Nilsson, H.; Sen, R. Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation. PLoS ONE 2015, 10, e0124726. [Google Scholar] [CrossRef] [PubMed]
- Artz, R.; Anderson, I.; Chapman, S.; Hagn, A.; Schloter, M.; Potts, J.; Campbell, C. Changes in Fungal Community Compo-sition in Response to Vegetational Succession During the Natural Regeneration of Cutover Peatlands. Microb. Ecol. 2007, 54, 508–522. [Google Scholar] [CrossRef]
- Dobrovolskaya, T.G.; Golovchenko, A.V.; Zvyagintsev, D.G.; Inisheva, L.I.; Kurakov, A.V.; Smagin, A.V.; Zenova, G.M.; Lysak, L.V.; Semenova, T.A.; Stepanov, A.L.; et al. The Functioning of Complexes of Microorganisms in Raised Peat Bogs an Analysis of the Reasons for the Slow Decomposition of Peat; KMK Scientific Press Ltd.: Moscow, Russia, 2013; p. 128. (In Russian) [Google Scholar]
- Golovchenko, A.V.; Semenova, T.A.; Anisimova, O.V.; Dobrovolskaya, T.G.; Glukhova, T.V.; Stepanov, A.L. The Structure of Microbial Communities in the Soils of Regressive Noncryosolic Bog. Eurasian Soil Sci. 2020, 53, 668–674. [Google Scholar] [CrossRef]
- Sizonenko, T.A.; Khabibullina, F.M.; Zagirova, S.V. Soil microbiota of meso-oligotrophic peatland of middle taiga. Mikol. Fitopatol. 2016, 50, 115–123. (In Russian) [Google Scholar]
- Matyshak, G.V.; Bogatyrev, L.G.; Goncharova, O.Y.; Bobrik, A.A. Specific features of the development of soils of hydromorphic ecosystems in the northern taiga of Western Siberia under conditions of cryogenesis. Eurasian Soil Sci. 2017, 50, 1115–1124. [Google Scholar] [CrossRef]
- Yakushev, A.V.; Matyshak, G.V.; Tarkhov, M.O.; Kachalkin, A.V.; Sefilyan, A.R.; Petrov, D.G. Microbiological Characteristics of Bare Peat Circles on Flat-Topped Peat Mounds in the North of Western Siberia. Eurasian Soil Sci. 2019, 52, 1081–1090. [Google Scholar] [CrossRef]
- Vinogradova, Y.A.; Lapteva, E.M.; Kovaleva, V.A.; Perminova, E.M. Diversity of soil micromycetes in peat frozen soils of the southern tundra. Mikol. Fitopatol. 2022, 56, 155–169. [Google Scholar]
- Kirtsideli, I.Y. Soil microfungi of the Barents Sea coast (near Varandey settlement). Nov. Sist. Nizshikh Rastenii 2009, 43, 113–121. [Google Scholar] [CrossRef]
- Kirtsideli, I.Y.; Vlasov, D.Y.; Barantsevich, E.P.; Krylenkov, V.A.; Sokolov, V.T. Microfungi from soil of polar island IzvestiaTsik (Kara sea). Mikol. Fitopatol. 2014, 48, 365–371. (In Russian) [Google Scholar]
- Cui, H.-J.; Wang, G.-X.; Yang, Y.; Chang, R.-Y.; Ran, F. Soil microbial community composition and its driving factors in alpine grasslands along a mountain elevational gradient. J. Mt. Sci. 2016, 13, 1013–1023. [Google Scholar] [CrossRef]
- Zvyagintsev, D.G. Methods of Soil Microbiology and Biochemistry; MGU: Moscow, Russia, 1991; p. 304. (In Russian) [Google Scholar]
- Ellis, M.B. Dematiaceous Hyphomycetes; Kew, Commonwealth Mycological Institute: Surrey, UK, 1971. [Google Scholar]
- Ramirez, C. Manual and Atlas of the Penicillia; Elsevier Biomedical Press: Amsterdam, The Netherlands, 1982; p. 874. [Google Scholar]
- Egorova, L.N. Pochvennye Griby Dal’nego Vostoka: Gifomitsety (Soil Fungi of the Russian Far East: Hyphomycetes); Nauka: Leningrad, Russia, 1986. (In Russian) [Google Scholar]
- Pitt, J. A Laboratory Guide to Common Penicillium Species; Commonwealth Scientific and Industrial Research Organization: North Wales, Australia, 1991. [Google Scholar]
- Leksandrova, A.V.; Velikanov, L.L.; Sidorova, I.I. The key to determining the species of the genus Trichoderma. Mikol. Fitopatol. 2006, 40, 457–468. (In Russian) [Google Scholar]
- Domsch, K.H.; Gams, W.; Anderson, T.-H. Compendium of Soil Fungi; IHW-Verlag: Eching, Germany, 2007. [Google Scholar]
- Mycobank. The MycoBank Engine and Related Databases. 2021. Available online: http://www.mycobank.org (accessed on 18 August 2021).
- Index Fungorum. Available online: https://www.indexfungorum.org/ (accessed on 20 March 2022).
- Magurran, E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Kurakov, A.V. Methods for Isolation and Characterization of Complexes of Microscopic Fungi in Terrestrial Ecosystems; Maks Press: Moscow, Russia, 2001; p. 92. (In Russian) [Google Scholar]
- Novakovskij, A.V. The interaction between Excel and the statistical package R for data processing in ecology. Vestn. Inst. Biol. 2016, 3, 26–33. (In Russian) [Google Scholar]
- Vlasov, D.Y.; Zelenskaya, M.S.; Kirtsideli, I.Y.; Abakumov, E.V.; Krylenkov, V.A.; Lukin, V.V. Fungi on the natural and anthropogenic substrates in West Antarctica. Mikol. Fitopatol. 2012, 46, 20–26. (In Russian) [Google Scholar]
- Kochkina, G.A.; Ivanushkina, N.E.; Ozerskaya, S.M. Structure of mycobiota of permafrost. Mikol. Segodnya 2011, 2, 178–184. (In Russian) [Google Scholar]
- Edgington, S.; Thompson, E.; Moore, D.; Hughes, K.A.; Bridge, P. Investigating the insecticidal potential of Geomyces (Myxotrichaceae: Helotiales) and Mortierella (Mortierellacea: Mortierellales) isolated from Antarctica. Springerplus 2014, 3, 289. [Google Scholar] [CrossRef]
- Kirtsideli, I.Y. Microscopic fungi in the soils of Hays Island (Franz Josef Land). Nov. Sist. Nizs. Rast. 2015, 49, 151–160. (In Russian) [Google Scholar]
- Kirtsideli, I.Y.; Abakumov, E.V.; Teshebaev, S.B.; Zelenskaya, M.S.; Vlasov, D.Y.; Krylenkov, V.A.; Ryabusheva, Y.V.; Sokolov, V.T.; Barantsevich, E.P. Microbial communities in areas of Arctic settlements. Hyg. Sanit. 2016, 95, 923–929. (In Russian) [Google Scholar] [CrossRef]
- Lamit, L.J.; Romanowicz, K.; Potvin, L.R.; Rivers, A.; Singh, K.; Lennon, J.T.; Tringe, S.G.; Kane, E.S.; Lilleskov, E.A. Patterns and drivers of fungal community depth stratification in Sphagnum peat. FEMS Microbiol. Ecol. 2017, 93, fix082. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Green, S.; Tfaily, M.; Prakash, O.; Konstantinidis, K.T.; Corbett, J.E.; Chanton, J.P.; Cooper, W.T.; Kostka, J.E. Microbial Community Structure and Activity Linked to Contrasting Biogeochemical Gradients in Bog and Fen Environments of the Glacial Lake Agassiz Peatland. Appl. Environ. Microbiol. 2012, 78, 7023–7031. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Zhao, Y.; Oh, K.-T.; Nguyen, V.-N.; Park, R.-D. Enzymatic deacetylation of chitin by extracellular chitin deacetylase from a newly screened Mortierella sp. DY-52. J. Microbiol. Biotechnol. 2008, 18, 759–766. [Google Scholar]
- Khabibullina, F.M. Soil Mycobiota of Natural and Anthropogenic Disturbed Ecosystems of the North-East of the European Part of Russia. Doctor’s Thesis, IB FRC Komi SC UB RAS, Syktyvkar, Russia, 2009. (In Russian). [Google Scholar]
- Wu, Z.-H.; Liu, D.; Xu, Y.; Chen, J.-L.; Lin, W.-H. Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chin. J. Nat. Med. 2018, 16, 219–224. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Ibrahim, S.R.; Asfour, H.Z. Antimicrobial metabolites from the endophytic fungus Aspergillus versicolor. Phytochem. Lett. 2019, 35, 152–155. [Google Scholar] [CrossRef]
- Linnik, M.A. Species Diversity and Characteristics of Fungi of the Genus Chaetomium. Ph.D. Thesis, Lomonosov MSU, Moscow, Russian, 2012. (In Russian). [Google Scholar]
- Lin, X.; Tfaily, M.M.; Steinweg, J.M.; Chanton, P.; Esson, K.; Yang, Z.K.; Chanton, J.P.; Cooper, W.; Schadt, C.W.; Kostka, J.E. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Appl. Environ. Microbiol. 2014, 80, 3518–3530. [Google Scholar] [CrossRef]
- Vedenyapina, E.G.; Lebedeva, E.V.; Zachinyaeva, A.V.; Vorobyev, N.I. Micromycetes in waste recycling II. Mycological characteristics of compost obtained as a result of bioconversion of urban waste. Mikol. Fitopatol. 2010, 44, 205–216. (In Russian) [Google Scholar]
- Shlychkova, D.M. Mechanism of Bio-Damage of Building Materials by Micromycetes in Historical and Cultural Monuments. Master’s Thesis, St. Petersburg State Polytechnic University. Institute of Civil Engineering, Saint Petersburg, Russia, 2014. (In Russian). [Google Scholar]
- Osono, T.; Ueno, T.; Uchida, M.; Kanda, H. Abundance and diversity of fungi in relation to chemical changes in arctic moss profiles. Polar Sci. 2011, 6, 121–131. [Google Scholar] [CrossRef]
Plot ID | Sampling Year | Bioclimatic Zone/Subzone, Location | Coordinates | Peat Thickness, cm | Depth of Seasonal Thawing, cm |
---|---|---|---|---|---|
Plot 1 | 2016 | Forest-tundra, Nenets Autonomous Okrug (NAO), lower reaches of the Pechora river, riverine sloping hill of the watershed | 67°40′ N 53°25′ E | 238 | 50 |
Plot 2 | 2015 | Forest-tundra, NAO, lower reaches of the Pechora river, oldest alluvial terrace | 67°39′ N 53°23′ E | * | 55 |
Plot 3 | 2019 | Southern tundra, The Komi Republic, Vorkuta district | 67°45′ N 63°17′ E | 236 | 26 |
Plot 4 | 2017 | Southern tundra-northern tundra ecotone belt, NAO, basin of the upper reaches of the Korotaikha river | 68°02′ N 62°43′ E | 265 | 32 |
Plot 5 | 2021 | Northern tundra, NAO, left bank of the lower reaches of the Korotaikha river, the Puntoty lake surroundings | 68°17′ N 62°24′ E | 246 | 30 |
Plot 6 | 2018 | Northern tundra, NAO, the Barents Sea Coast, marine terrace, polygonal tundra | 68°35′ N 55°56′ E | 131 | 28 |
Observaton Year | Temperature, °C | Total Precipitation, mm | ||||||
---|---|---|---|---|---|---|---|---|
I-XII 1 | VI-VII 2 | VII 3 | VIII 4 | I-XII 1 | VI-VII 2 | VII 3 | VIII 4 | |
2015 | −3.8 | 10.4 | 10.2 | 9.2 | 448 | 159.4 | 95.0 | 22.7 |
2016 | −1.1 | 14.4 | 18.8 | 12.9 | 441.5 | 160.3 | 13.5 | 99.0 |
2017 | −4.8 | 11.6 | 16.8 | 9.3 | 524.1 | 128.6 | 8.3 | 81.7 |
2018 | −3.9 | 10.7 | 15.2 | 9.7 | 747.3 | 146.0 | 19.1 | 85.6 |
2019 | −3.7 | 10.0 | 15.3 | 9.9 | 667.2 | 176.1 | 63.9 | 58.4 |
2020 | −1.6 | 11.8 | 15.0 | 12.2 | 670.4 | 120.2 | 37.4 | 13.2 |
2021 | −2.4 | 11.0 | 11.5 | 12.5 | 506.4 | 138.2 | 53.7 | 26.2 |
1990–2020 5 | −4.7 | 10.2 | 13.5 | 9.9 | 547 | 167.6 | 52.5 | 63.4 |
Bioclimatic Zone/Subzone | ||
---|---|---|
Forest-Tundra | Southern Tundra | Northern Tundra |
Penicillium aurantiogriseum Dierckx, P. canescens Sopp, P. citreonigrum Dierckx, P. granulatum Bainier, P. lanosum Westling, P. simplicissimum Thom, P. spinulosum Thom, P. thomii K.M. Zaleski, Penicillium sp., Pseudogymnoascus pannorum (Link) Minnis & D.L. Lindne, Umbelopsis vinacea Arx, Mortierella sp., Mucor hiemalis Wehmer, Mucor sp., Talaromyces funiculosus (Thom) Samson, N. Yilmaz, Frisvad & Seifert, N. Yilmaz, Frisvad & Seifert, albino Mycelia sterilia, pigmented Mycelia sterilia | ||
Aspergillus flavus Link, Aspergillus fumigatus Fresen., Chrysosporium merdarium (Ehrenb.) J.W. Carmich., Cladosporium cladosporioides (Fresen.) G.A. de Vries, Cl. herbarum (Pers.) Link, Mortierella alpina Peyron, M. polycephala Coem., Mucor racemosus Bull., Mucor sp. Penicillium dierckxii Biourge, P. implicatum Biourge, P. lividum Westling, P. olivicolor Pitt, P. waksmanii K.W. Zaleski, Talaromyces diversus (Raper & Fennell) Samson, N. Yilmaz & Frisvad, T. rugulosus (Thom) Samson, Trichoderma viride Schumach. | Aureobasidium pullulans (de Bary & Löwenthal) G. ArnaudG. Arnaud, Talaromyces stipitatus C.R. Benj. | |
Alternaria tenuis Nees, Aspergillus niger Tiegh., A. ochraceus G. Wilh., Aspergillus sp., Cephalosporium terricola Kamyschko, Mortierella horticola Linnem., M. biramosa Tiegh., M. pygmaea Chalab., M. verticillata Linnem., Oidiodendron tenuissimum (Peck) S. Hughes, O. gracile Zhdanova, O. griseum Robak, Oidiodendron sp., Penicillium citrinum Thom, P. commune Thom, P. digitatum Sacc., P. frequentans Westling, P. glaucum Link, P. hirsutum Dierckx, P. italicum Wehmer, P. jensenii K.W. Zaleski, P. lapidosum Raper & Fennell, P. miczynskii K.W. Zaleski, P. oxalicum Currie & Thom, P. phoeniceum J.F.H. Beyma, P. raistrickii G. Sm., P. restrictum J.C. Gilman & E.V. Abbott, P. turbatum Westling 1911, P. roqueforti Thom, P. velutinum Terui & Shibas., P. verrucosum Dierckx, P. vinaceum J.C. Gilman & E.V. Abbott, Podila minutissima (Tiegh.) Vandepol & Bonito Talaromyces variabilis (Sopp) Samson, N. Yilmaz, Frisvad & Seifert, T. verruculosus (Peyronel) Samson, N. Yilmaz, Frisvad & Seifert, Tolypocladium inflatum W. Gams, Trichoderma aureoviride Rifai, Trichoderma sp., Umbelopsis isabellina W.Gams, U. ramanniana W.Gams | Mucor circinelloides Tiegh., Chaetomium globosum Kunze, Ch. spirale Zopf, Chaetomium sp., Oidiodendron majus G.L. Barron, Penicillium glabrum (Wehmer) Westling, Trichoderma koningii Oudemans | |
Penicillium camemberti Sopp, P. decumbens Thom, P. chrysogenum Thom, P. raistrickii G. Sm. | Penicillium camemberti Sopp, P. decumbens Thom, P. chrysogenum Thom, P. raistrickii G. Sm. |
Indices | Plots | ||||||||
---|---|---|---|---|---|---|---|---|---|
1, 2 | 3, 4 | 5, 6 | 1, 2 | 3, 4 | 5, 6 | 1, 2 | 3, 4 | 5, 6 | |
Active Layer | Permafrost Layer | Mineral Layer | |||||||
The total number of isolated species | 64 | 24 | 20 | 37 | 26 | 4 | 3 | 0 | 0 |
Shannon species diversity index (H) | 2.84 | 2.53 | 2.38 | 2.09 | 2.06 | 0.67 | 0.43 | 0 | 0 |
Pielou’s evenness index (E) | 0.68 | 0.80 | 0.79 | 0.58 | 0.63 | 0.49 | 0.39 | 0 | 0 |
Simpson’s dominance index (S) (1-D) | 0.91 | 0.89 | 0.88 | 0.84 | 0.83 | 0.01 | 0.97 | 0 | 0 |
Williams polydominance index (1/D) | 11.27 | 9.44 | 8.18 | 6.07 | 5.97 | 100.00 | 30.46 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinogradova, Y.A.; Kovaleva, V.A.; Perminova, E.M.; Shakhtarova, O.V.; Lapteva, E.M. Zonal Patterns of Changes in the Taxonomic Composition of Culturable Microfungi Isolated from Permafrost Peatlands of the European Northeast. Diversity 2023, 15, 639. https://doi.org/10.3390/d15050639
Vinogradova YA, Kovaleva VA, Perminova EM, Shakhtarova OV, Lapteva EM. Zonal Patterns of Changes in the Taxonomic Composition of Culturable Microfungi Isolated from Permafrost Peatlands of the European Northeast. Diversity. 2023; 15(5):639. https://doi.org/10.3390/d15050639
Chicago/Turabian StyleVinogradova, Yulia A., Vera A. Kovaleva, Evgenia M. Perminova, Olga V. Shakhtarova, and Elena M. Lapteva. 2023. "Zonal Patterns of Changes in the Taxonomic Composition of Culturable Microfungi Isolated from Permafrost Peatlands of the European Northeast" Diversity 15, no. 5: 639. https://doi.org/10.3390/d15050639
APA StyleVinogradova, Y. A., Kovaleva, V. A., Perminova, E. M., Shakhtarova, O. V., & Lapteva, E. M. (2023). Zonal Patterns of Changes in the Taxonomic Composition of Culturable Microfungi Isolated from Permafrost Peatlands of the European Northeast. Diversity, 15(5), 639. https://doi.org/10.3390/d15050639