Effects of Peri-Urbanization on Coastal Sage Scrub Ant Species in Baja California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Methods
2.3. Data Analysis
3. Results
3.1. Species Abundance across Sites
3.2. Distribution of Feeding Guilds
3.3. Ecological Variables Influencing Species Abundance and Richness
4. Discussion
4.1. Ecological Characteristics
4.2. Feeding Guilds and Functional Diversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Leary, J.F. Coastal Sage Scrub: Threats and Current Status. Fremontia 1995, 23, 27–31. [Google Scholar]
- Melliger, R.L.; Braschler, B.; Rusterholz, H.-P.; Baur, B. Diverse Effects of Degree of Urbanisation and Forest Size on Species Richness and Functional Diversity of Plants, and Ground Surface-Active Ants and Spiders. PLoS ONE 2018, 13, e0199245. [Google Scholar] [CrossRef] [PubMed]
- Resasco, J.; Bruna, E.M.; Haddad, N.M.; Banks-Leite, C.; Margules, C.R. The Contribution of Theory and Experiments to Conservation in Fragmented Landscapes. Ecography 2017, 40, 109–118. [Google Scholar] [CrossRef]
- Achury, R.; Holway, D.A.; Suarez, A.V. Pervasive and Persistent Effects of Ant Invasion and Fragmentation on Native Ant Assemblages. Ecology 2021, 102, e03257. [Google Scholar] [CrossRef]
- United Nations. Around 2.5 Billion More People Will Be Living in Cities by 2050, Projects New UN Report; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Hassan, M.O.; Hassan, Y.M. Effect of Human Activities on Floristic Composition and Diversity of Desert and Urban Vegetation in a New Urbanized Desert Ecosystem. Heliyon 2019, 5, e02283. [Google Scholar] [CrossRef] [PubMed]
- Montaño, N.M. Research on Arbuscular Mycorrhizae in Mexico: An Historical Synthesis and Future Prospects. Symbiosis 2012, 57, 111–126. [Google Scholar] [CrossRef]
- González-Abraham, C.E.; Garcillán, P.P.; Ezcurra, E. Ecoregions of Baja California Peninsula: A Synthesis. Bol. Soc. Bot. Mex 2010, 87, 69–82. [Google Scholar]
- Cazorla, B.P.; Garcillán, P.P.; Cabello, J.; Alcaraz-Segura, D.; Reyes, A.; Peñas, J. Patterns of Ecosystem Functioning as Tool for Biological Regionalization: The Case of the Mediterranean-Desert-Tropical Transition of Baja California. Mediterr. Bot. 2021, 42, e68529. [Google Scholar] [CrossRef]
- Burge, D.O.; Thorne, J.H.; Harrison, S.P.; O’Brien, B.C.; Rebman, J.P.; Shevock, J.R.; Alverson, E.R.; Hardison, L.K.; RodrÍguez, J.D.; Junak, S.A. Plant Diversity and Endemism in the California Floristic Province. Madroño 2016, 63, 3–206. [Google Scholar] [CrossRef]
- Vanderplank, S.E.; Rebman, J.P.; Ezcurra, E. Where to Conserve? Plant Biodiversity and Endemism in Mediterranean Mexico. Biodivers. Conserv. 2018, 27, 109–122. [Google Scholar] [CrossRef]
- Schmidt, K.T.; Maltz, M.; Ta, P.; Khalili, B.; Weihe, C.; Phillips, M.; Aronson, E.; Lulow, M.; Long, J.; Kimball, S. Identifying Mechanisms for Successful Ecological Restoration with Salvaged Topsoil in Coastal Sage Scrub Communities. Diversity 2020, 12, 150. [Google Scholar] [CrossRef]
- Wills, B.D.; Landis, D.A. The Role of Ants in North Temperate Grasslands: A Review. Oecologia 2018, 186, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Helms IV, J.A.; Ijelu, S.E.; Wills, B.D.; Landis, D.A.; Haddad, N.M. Ant Biodiversity and Ecosystem Services in Bioenergy Landscapes. Agric. Ecosyst. Environ. 2020, 290, 106780. [Google Scholar] [CrossRef]
- Moranz, R.A.; Debinski, D.M.; Winkler, L.; Trager, J.; McGranahan, D.A.; Engle, D.M.; Miller, J.R. Effects of Grassland Management Practices on Ant Functional Groups in Central North America. J. Insect Conserv. 2013, 17, 699–713. [Google Scholar] [CrossRef]
- Philpott, S.M.; Armbrecht, I. Biodiversity in Tropical Agroforests and the Ecological Role of Ants and Ant Diversity in Predatory Function. Ecol. Entomol. 2006, 31, 369–377. [Google Scholar] [CrossRef]
- Anjos, D.V.; Tena, A.; Viana-Junior, A.B.; Carvalho, R.L.; Torezan-Silingardi, H.; Del-Claro, K.; Perfecto, I. The Effects of Ants on Pest Control: A Meta-Analysis. Proc. R. Soc. B 2022, 289, 20221316. [Google Scholar] [CrossRef]
- Delabie, J.H.C. Relaciones entre hormigas y plantas: Una introducción. In Introducción a las Hormigas de la Región Neotropical; Instituto Humboldt: Bogotá, Colombia, 2003; pp. 167–180. [Google Scholar]
- Rostás, M.; Tautz, J. Ants as Pollinators of Plants and the Role of Floral Scents. In All Flesh Is Grass: Plant-Animal Interrelationships; Springer: Berlin/Heidelberg, Germany, 2011; pp. 149–161. [Google Scholar]
- De Bruyn, L.L.; Conacher, A.J. The Role of Termites and Ants in Soil Modification—A Review. Soil. Res. 1990, 28, 55–93. [Google Scholar]
- Ibáñez, J.; Soriano, P. Hormigas, Aves y Roedores Como Depredadores de Semillas En Un Ecosistema Semiárido Andino de Venezuela. Ecotropicos 2004, 17, 38–51. [Google Scholar]
- Prather, C.M.; Pelini, S.L.; Laws, A.; Rivest, E.; Woltz, M.; Bloch, C.P.; Del Toro, I.; Ho, C.-K.; Kominoski, J.; Newbold, T.S. Invertebrates, Ecosystem Services and Climate Change. Biol. Rev. 2013, 88, 327–348. [Google Scholar] [CrossRef]
- Lloret, F. Régimen de Incendios y Regeneración. In Ecología del Bosque Mediterráneo en un Mundo Cambiante; Organismo Autónomo Parques Nacionales: Teguise, Spain, 2004; pp. 101–126. [Google Scholar]
- Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gomez, M. Fire Regimes and Vegetation Responses in Two Mediterranean-Climate Regions. Rev. Chil. Hist. Nat. 2004, 77, 455–464. [Google Scholar] [CrossRef]
- Folgarait, P.J. Ant Biodiversity and Its Relationship to Ecosystem Functioning: A Review. Biodivers. Conserv. 1998, 7, 1221–1244. [Google Scholar] [CrossRef]
- Soares, M.d.O.; Campos, C.C.; Carneiro, P.B.M.; Barroso, H.S.; Marins, R.V.; Teixeira, C.E.P.; Menezes, M.O.B.; Pinheiro, L.d.S.; Viana, M.B.; Feitosa, C.V. Challenges and Perspectives for the Brazilian Semi-Arid Coast under Global Environmental Changes. Perspect. Ecol. Conserv. 2021, 19, 267–278. [Google Scholar]
- Espejel, I.; Aramburo, G.; Leyva, C.; Cruz, Y.; Bravo, L.C.; Zuñiga, W. Coastal Vegetation of Northwest Baja California: Conservation Options. Bight Bull./Boletín Cuenca 2002, 5, 1–5. [Google Scholar]
- Burger, J.C.; Redak, R.A.; Allen, E.B.; Rotenberry, J.T.; Allen, M.F. Restoring Arthropod Communities in Coastal Sage Scrub. Conserv. Biol. 2003, 17, 460–467. [Google Scholar] [CrossRef]
- Mieles García, A.E. Las Hormigas (Hymenoptera: Formicidae) del Área Periurbana de Ensenada, Baja California. Master’s Thesis, Universidad Autonoma de Baja California, Baja California, Mexico, 2010. [Google Scholar]
- Riordan, E.C. Modeling the Uncertain Future of a Threatened Habitat: Climate Change and Urban Growth in California Sage Scrub; University of California: Los Angeles, CA, USA, 2013. [Google Scholar]
- Garcillán, P.P.; Rebman, J.P.; Casillas, F. Analysis of the Non-Native Flora of Ensenada, a Fast Growing City in Northwestern Baja California. Urban Ecosyst. 2009, 12, 449–463. [Google Scholar] [CrossRef]
- Johnson, R.A.; Ward, P.S. Biogeography and Endemism of Ants (Hymenoptera: Formicidae) in Baja California, Mexico: Afirst Overview. J. Biogeogr. 2002, 29, 1009–1026. [Google Scholar] [CrossRef]
- Rojas Fernández, P. Las Hormigas del Suelo en México: Diversidad, Distribución e Importancia (Hymenoptera: Formicidade). Acta Zool. Mex. 2001, 17, 189–238. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.O. The Ants; Harvard University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Hernández, F.V. HYMENOPTERA: Biogeographical Patterns of Ants (Hymenoptera: Formicidae) from Baja California Peninsula and Sonora, México, Using PAE. Dugesiana 2013, 20, 2. (In Spanish) [Google Scholar]
- Aguilar-Méndez, M.J.; Rosas-Mejía, M.; Vásquez-Bolaños, M.; González-Hernández, G.A.; Janda, M. New Distributional Records for Ants and the Evaluation of Ant Species Richness and Endemism Patterns in Mexico. Biodivers. Data J. 2021, 9, e60630. [Google Scholar] [CrossRef]
- Ojeda-Revah, L.; Bocco, G.; Ezcurra, E.; Espejel, I. Land-Cover/Use Transitions in the Binational Tijuana River Watershed during a Period of Rapid Industrialization. Appl. Veg. Sci. 2008, 11, 107–116. [Google Scholar] [CrossRef]
- Meyer, E.; Simancas, J.; Jensen, N. Conservation at California’s Edge. Fremontia 2016, 44, 8–15. [Google Scholar]
- INEGI. Censo de Población y Vivienda—SCITEL; INEGI: Aguascalientes, Mexico, 2022. (In Spanish) [Google Scholar]
- Dauber, J.; Hirsch, M.; Simmering, D.; Waldhardt, R.; Otte, A.; Wolters, V. Landscape Structure as an Indicator of Biodiversity: Matrix Effects on Species Richness. Agric. Ecosyst. Environ. 2003, 98, 321–329. [Google Scholar] [CrossRef]
- Agosti, D.; Alonso, L.E. The ALL Protocol. In ANTS: Standard Methods for Measuring and Monitoring Biodiversity; Smithsonian Institution Press: Washington, DC, USA, 2000; pp. 204–206. [Google Scholar]
- Casanoves, F.; Pla, L.; Di Rienzo, J.A.; Díaz, S. FDiversity: A Software Package for the Integrated Analysis of Functional Diversity. Methods Ecol. Evol. 2011, 2, 233–237. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Rao, C.R. Diversity and Dissimilarity Coefficients: A Unified Approach. Theor. Popul. Biol. 1982, 21, 24–43. [Google Scholar] [CrossRef]
- Guénard, B.; Weiser, M.; Gomez, K.; Narula, N.; Economo, E.P. The Global Ant Biodiversity Informatics (GABI) Database: A Synthesis of Ant Species Geographic Distributions. Myrmecol. News 2017, 24, 83–89. [Google Scholar]
- Westman, W.E. Xeric Mediterranean-Type Shrubland Associations of Alta and Baja California and the Community/Continuum Debate. In Plant Community Ecology: Papers in Honor of Robert H. Whittaker; Advances in Vegetation Science; Springer: Dordrecht, The Netherlands, 1985; Volume 7, pp. 79–95. [Google Scholar]
- Mellink, E. El Límite Sur de La Región Mediterránea de Baja California, Con Base En Sus Tetrápodos Endémicos. Acta Zool. Mex. 2002, 85, 11–23. [Google Scholar] [CrossRef]
- Sanford, M.P.; Manley, P.N.; Murphy, D.D. Effects of Urban Development on Ant Communities: Implications for Ecosystem Services and Management. Conserv. Biol. 2009, 23, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.J.F.; Human, K.G. Effects of Harvester Ants on Plant Species Distribution and Abundance in a Serpentine Grassland. Oecologia 1997, 112, 237–243. [Google Scholar] [CrossRef]
- Kaspari, M. Introducción a La EcologÌa de Las Hormigas. In Introducción a las Hormigas de la Región Neotropical; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2003; pp. 96–112. ISBN 958-8151-23-6. [Google Scholar]
- Voss, M. The Role of the Epigeous Mound in the Colonial Respiration of the Allegheny Mound Building Ant (Formica Exsectoides). Master’s Thesis, State University of New York, Syracuse, NY, USA, 1995. [Google Scholar]
- Del-Valle-Lucero, I.; Cabrera-Muro, H.R. Aplicación de un Modelo Numérico Unidimensional a Bahía San Quintín, BC Verano de 1977. Cienc. Mar. 1981, 7, 1–15. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Wiens, J.A. The Effects of Land Use on the Structure of Ground-Foraging Ant Communities in the Argentine Chaco. Ecol. Appl. 1996, 6, 1225–1240. [Google Scholar] [CrossRef]
- Debinski, D.M.; Moranz, R.A.; Delaney, J.T.; Miller, J.R.; Engle, D.M.; Winkler, L.B.; McGranahan, D.A.; Barney, R.J.; Trager, J.C.; Stephenson, A.L. A Cross-Taxonomic Comparison of Insect Responses to Grassland Management and Land-Use Legacies. Ecosphere 2011, 2, 1–16. [Google Scholar] [CrossRef]
- Andersen, A.N. The Use of Ant Communities to Evaluate Change in Australian Terrestrial Ecosystems: A Review and a Recipe. Proc. Ecol. Soc. Aust. 1990, 16, 347–357. [Google Scholar]
- Andersen, A.N. Ants as Indicators of Restoration Success at a Uranium Mine in Tropical Australia. Restor. Ecol. 1993, 1, 156–167. [Google Scholar] [CrossRef]
- Caut, S.; Jowers, M.J.; Arnan, X.; Pearce-Duvet, J.; Rodrigo, A.; Cerda, X.; Boulay, R.R. The Effects of Fire on Ant Trophic Assemblage and Sex Allocation. Ecol. Evol. 2014, 4, 35–49. [Google Scholar] [CrossRef]
- González, E.; Buffa, L.; Defagó, M.T.; Molina, S.I.; Salvo, A.; Valladares, G. Something Is Lost and Something Is Gained: Loss and Replacement of Species and Functional Groups in Ant Communities at Fragmented Forests. Landsc. Ecol. 2018, 33, 2089–2102. [Google Scholar] [CrossRef]
- Kelly, R.S.B.B.J. Influence of Small-Scale Disturbances by Kangaroo Rats on Chihuahuan Desert Ants. Oecologia 2000, 125, 142–149. [Google Scholar]
- Silvestre, R.; Silva, R.R.d.; Brandão, C.R.F. Grupos Funcionales de Hormigas: El Caso de Los Gremios del Cerrado. In Introducción a las Hormigas de las Región Neotropical; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2003. [Google Scholar]
- Suarez, A.; Case, T. Fragmentation-Mediated Invasion: The Argentine Ant, Linepithema humile, in Southern California. How Landsc. Chang. Hum. Disturb. Ecosyst. Fragm. Am. 2013, 162, 161. [Google Scholar]
- Rowles, A.D.; O’Dowd, D.J. Interference Competition by Argentine Ants Displaces Native Ants: Implications for Biotic Resistance to Invasion. Biol. Invasions 2007, 9, 73–85. [Google Scholar] [CrossRef]
- McIntyre, N.E. Ecology of Urban Arthropods: A Review and a Call to Action. Ann. Entomol. Soc. Am. 2000, 93, 825–835. [Google Scholar] [CrossRef]
- Gove, A.D.; Majer, J.D.; Rico-Gray, V. Methods for Conservation Outside of Formal Reserve Systems: The Case of Ants in the Seasonally Dry Tropics of Veracruz, Mexico. Biol. Conserv. 2005, 126, 328–338. [Google Scholar] [CrossRef]
- Angulo, E.; Boulay, R.; Ruano, F.; Tinaut, A.; Cerdá, X. Anthropogenic Impacts in Protected Areas: Assessing the Efficiency of Conservation Efforts Using Mediterranean Ant Communities. Peer J. 2016, 4, e2773. [Google Scholar] [CrossRef] [PubMed]
SPECIES | BC | BCS | CA | AZ | SON | CHI | TEH |
---|---|---|---|---|---|---|---|
Dolichoderinae | |||||||
Dorymyrmex bicolor Wheeler, 1906 (G) | x | x | x | x | x | ||
Dorymyrmex insanus Buckley, 1866 (G) | x | x | x | x | x | x | x |
Forelius mccooki McCook, 1880 (N) | x | x | x | x | x | x | |
Forelius pruinosus Roger, 1863 (N) | x | x | x | x | x | ||
Linepithema humile Mayr, 1868 (G) | x | x | x | ||||
Tapinoma sessile Say, 1836 (N) | x | x | x | ||||
Ecitoninae | |||||||
Neivamyrmex nigrescens Cresson, 1872 (D) | x | x | |||||
Formicinae | |||||||
* Brachymyrmex sp.1 nd. Mayr, 1868 (G) | |||||||
Camponotus clarithorax Creighton, 1950 (G) | x | x | x | ||||
Camponotus dumetorum Wheeler, 1910 (G) | x | x | |||||
Camponotus hyatti Emery, 1893 (G) | x | x | x | x | |||
Camponotus festinatus Buckley, 1866 (G) | x | x | x | x | x | x | |
Camponotus semitestaceus Snelling, 1970 (G) | x | x | x | ||||
Camponotus vicinus Mayr, 1870 (G) | x | x | x | ||||
Camponotus sp. BCA-2 Mayr, 1861 (G) | x | x | |||||
Camponotus sp. BCA-3 Mayr, 1861 (G) | x | x | |||||
Formica francoeuri Bolton, 1995 (G) | x | x | |||||
Formica moki Wheeler, 1906 (G) | x | x | x | ||||
Myrmecocystus mimicus Wheeler, 1908 (N) | x | x | x | x | x | ||
Myrmecocystus testaceus Emery, 1893 (N) | x | x | |||||
Myrmecocystus wheeleri Snelling, 1971 (N) | x | x | |||||
Myrmicinae | |||||||
Crematogaster californica Wheeler, 1919 (N) | x | x | x | x | x | ||
Monomorium ergatogyna Wheeler, 1904 (N) | x | x | x | x | x | ||
Pheidole califórnica Mayr, 1870 (G) | x | x | |||||
Pheidole clementensis Gregg, 1969 (G) | x | x | |||||
Pheidole hyatti Emery, 1895 (G) | x | x | x | x | x | x | |
Pheidole pilifera Roger, 1863 (G) | x | x | |||||
Pheidole vistana Forel, 1914 (G) | x | x | x | x | x | ||
Pogonomyrmex californicus Buckley, 1867 (Gr) | x | x | x | x | x | ||
Pogonomyrmex montanus MacKay, 1980 (Gr) | x | x | |||||
Solenopsis amblychila Wheeler, 1915 (G) | x | x | x | x | x | ||
* Solenopsis carolinensis Forel 1901 (G) | |||||||
Solenopsis molesta Say, 1836 (G) | x | x | x | x | x | ||
Solenopsis xyloni McCook, 1880 (G) | x | x | x | x | x | x | |
Temnothorax andrei Emery, 1895 (G) | x | x | x | x | |||
* Temnothorax sp.1 Mayr, 1861 (G) | |||||||
Temnothorax sp. BCA-9 Mayr, 1861 (G) | x | x | x | ||||
Veromessor andrei Mayr, 1886 (C) | x | x | |||||
Veromessor stoddardi Emery, 1895 (C) | x | x | |||||
Pseudomyrmecinae | |||||||
Pseudomyrmex apache Creighton, 1953 (N) | x | x | x | x | x |
Diversity Indices | Vegetation | Slope | Elevation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLOT | S | H | E | D | Rao | OR | Soil | %S | %H | % B | <10° | <20° | <30° | >31° | (mamsl) |
RHP | 22.00 | 0.89 | 0.29 | 0.35 | 0.33 | S | S | 4.60 | 61.40 | 34.00 | 80.00 | 19.70 | 0.30 | 0.00 | 273.00 |
ECO | 20.00 | 1.31 | 0.44 | 0.53 | 0.66 | S | S | 8.20 | 58.50 | 33.30 | 86.90 | 13.10 | 0.00 | 0.00 | 338.00 |
CDP | 20.00 | 1.84 | 0.61 | 0.79 | 0.77 | E | S | 19.20 | 60.90 | 19.80 | 33.80 | 66.20 | 0.00 | 0.00 | 143.00 |
MIR | 15.00 | 2.02 | 0.75 | 0.84 | 0.13 | N | R | 1.10 | 72.10 | 26.80 | 56.00 | 20.30 | 12.80 | 10.90 | 142.00 |
VDO | 15.00 | 1.52 | 0.56 | 0.74 | 0.24 | W | R | 7.10 | 92.90 | 0.00 | 39.70 | 55.90 | 4.30 | 0.00 | 117.00 |
BUF | 17.00 | 1.79 | 0.63 | 0.80 | 0.26 | S | C | 1.70 | 72.70 | 25.60 | 55.60 | 38.40 | 6.00 | 0.00 | 102.00 |
CET | 8.00 | 0.91 | 0.44 | 0.43 | 0.24 | W | R | 1.30 | 79.10 | 19.60 | 9.20 | 51.80 | 39.00 | 0.00 | 196.00 |
LIB | 15.00 | 1.50 | 0.55 | 0.66 | 0.48 | E | S | 29.80 | 51.20 | 19.00 | 68.30 | 31.70 | 0.00 | 0.00 | 52.00 |
MZA | 12.00 | 0.81 | 0.33 | 0.35 | 0.17 | S | C | 6.80 | 93.20 | 0.00 | 13.00 | 76.10 | 10.90 | 0.00 | 41.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mieles, A.E.; Voss, M.A.; Jiménez-Soto, E. Effects of Peri-Urbanization on Coastal Sage Scrub Ant Species in Baja California. Diversity 2023, 15, 953. https://doi.org/10.3390/d15090953
Mieles AE, Voss MA, Jiménez-Soto E. Effects of Peri-Urbanization on Coastal Sage Scrub Ant Species in Baja California. Diversity. 2023; 15(9):953. https://doi.org/10.3390/d15090953
Chicago/Turabian StyleMieles, Alejandro E., Margaret A. Voss, and Estelí Jiménez-Soto. 2023. "Effects of Peri-Urbanization on Coastal Sage Scrub Ant Species in Baja California" Diversity 15, no. 9: 953. https://doi.org/10.3390/d15090953
APA StyleMieles, A. E., Voss, M. A., & Jiménez-Soto, E. (2023). Effects of Peri-Urbanization on Coastal Sage Scrub Ant Species in Baja California. Diversity, 15(9), 953. https://doi.org/10.3390/d15090953