Insect Abundance and Richness Response to Ecological Reclamation on Well Pads 5–12 Years into Succession in a Semi-Arid Natural Gas Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Selection
2.3. Vegetation Sampling
2.4. Insect Sampling
2.5. Statistical Analysis
3. Results
3.1. Vegetation Sampling
3.2. Insect Sampling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerwing, T.G.; Hawkes, V.C.; Gann, G.D.; Murphy, S.D. Restoration, reclamation, and rehabilitation: On the need for, and positing a definition of, ecological reclamation. Restor. Ecol. 2022, 30, e13461. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Plaza, C.; Zaccone, C.; Sawicka, K.; Méndez, A.M.; Tarquis, A.; Gascó, G.; Heuvelink, G.B.; Schuur, E.A.; Maestre, F.T. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 2018, 8, 13788. [Google Scholar] [CrossRef] [PubMed]
- Okin, G.S.; Heras, M.M.; Saco, D.L.; Throop, P.M.; Vivoni, H.L.; Parsons, E.R.; Wainwright, A.J.; Peters, D.P. Connectivity in dryland landscapes: Shifting concepts of spatial interactions. Front. Ecol. Environ. 2015, 13, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Svejcar, L.N.; Kildisheva, O.A. The age of restoration: Challenges presented by dryland systems. Plant Ecol. 2017, 218, 1–6. [Google Scholar] [CrossRef]
- Yao, J.; Liu, H.; Huang, J.; Gao, Z.; Wang, G.; Li, D.; Yu, H.; Chen, X. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat. Commun. 2020, 11, 1665. [Google Scholar] [CrossRef] [PubMed]
- Pîrlogea, C. The human development relies on energy. Panel data evidence. Procedia Econ. Financ. 2012, 3, 496–501. [Google Scholar] [CrossRef]
- Stahl, P.D.; Curran, M.F. Collaborative Efforts Towards Ecological Habitat Restoration of a Threatened Species, Greater Sage-Grouse in Wyoming, USA. In Land Reclamation in Ecological Fragile Areas; CRC Press: London, UK, 2017; pp. 251–254. [Google Scholar]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- United States Department of the Interior; United States Department of Agriculture. The Gold Book: Surface Operating Standards and Guidelines for Oil and Gas Exploration and Development, 4th ed.; BLM/WO/ST-06/021+3071/REV 07; Bureau of Land Management: Denver, CO, USA, 2007. [Google Scholar]
- Curran, M.F.; Stahl, P.D. Database management for large scale reclamation projects in Wyoming: Developing better data acquisition, monitoring, and models for applications to future projects. J. Environ. Solut. Oil Gas Min. 2015, 1, 31–43. [Google Scholar] [CrossRef]
- Curran, M.F.; Wolff, B.J.; Stahl, P.D. Demonstration Study: Approaching oil and gas pad reclamation with data management: A framework for the future. J. Am. Soc. Min. Reclam. 2013, 2, 195–204. [Google Scholar]
- Curran, M.F.; Cox, S.E.; Robinson, T.J.; Robertson, B.L.; Rogers, K.A.; Sherman, Z.A.; Adams, T.A.; Strom, C.F.; Stahl, P.D. Spatially balanced sampling and ground-level imagery for revegetation monitoring on reclaimed well pads. Restor. Ecol. 2019, 27, 947–980. [Google Scholar] [CrossRef]
- Davies, K.W.; Boyd, C.S.; Svejcar, L.N.; Clenet, D.R. Long-Term Effects of Revegetation Efforts in Annual Grass—Invaded Rangeland. Rangel. Ecol. Mgmt. 2024, 92, 59–67. [Google Scholar] [CrossRef]
- Curran, M.F.; Crow, T.M.; Hufford, K.M.; Stahl, P.D. Forbs and greater sage-grouse habitat restoration efforts: Suggestions for improving commercial seed availability and restoration practices. Rangelands 2015, 37, 211–216. [Google Scholar] [CrossRef]
- Hoover, D.L.; Bestelmeyer, B.; Grimm, N.B.; Huxman, T.E.; Reed, S.C.; Sala, O.; Seastedt, T.R.; Wilmer, H.; Ferrenberg, S. Traversing the wasteland: A framework for assessing ecological threats to drylands. BioScience 2020, 70, 35–47. [Google Scholar] [CrossRef]
- Shackelford, N.; Paterno, G.B.; Winkler, D.E.; Erickson, T.E.; Leger, E.A.; Svejcar, L.N.; Breed, M.F.; Faist, A.M.; Harrison, P.A.; Curran, M.F.; et al. Drivers of seedling establishment success in dryland restoration efforts. Nat. Ecol. Evol. 2021, 5, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Sommers, J. Green River Drift: A History of the Upper Green River Cattle Association; Falcon Press Publishing Co., Inc.: Helena, MT, USA, 1994. [Google Scholar]
- Monroe, A.P.; Aldridge, C.L.; O’Donnell, M.S.; Manier, D.J.; Homer, C.G.; Anderson, P.J. Using remote sensing products to predict recovery of vegetation across space and time following energy development. Ecol. Indic. 2020, 110, 105872. [Google Scholar] [CrossRef]
- Curran, M.F.; Sorenson, J.R.; Robinson, T.J. Soil stockpile age does not impact vegetation establishment in a cold, arid natural gas field. Recl. Sci. 2024, 1, 41–47. [Google Scholar] [CrossRef]
- Mason, A.; Driessen, C.; Norton, J.; Strom, C. First year soil impacts of well-pad development and reclamation on Wyoming’s sagebrush steppe. Nat. Resour. Environ. Issues 2011, 17, 29–34. [Google Scholar]
- Curran, M.F.; Sorenson, J.; Stahl, P.D. Rocky mountain beeplant aids revegetation in an arid natural gas field. Environ. Connect 2019, 14, 27–29. [Google Scholar]
- Walker, L.R.R.; Walker, J.; del Moral, R. Forging a new alliance between succession and restoration. In Linking Restoration and Ecological Succession; Walker, L.R.R., Walker, J., Hobbs, R.H., Eds.; Springer: New York, NY, USA, 2007; pp. 1–18. [Google Scholar]
- Archer, S.; Pyke, D.A. Plant-animal interactions affecting plant establishment and persistence on revegetated rangeland. Rangel. Ecol. Manag. 1991, 44, 558–565. [Google Scholar] [CrossRef]
- Kearns, C.A.; Inouye, D.W. Pollinators, flowering plants, and conservation biology. Bioscience 1997, 47, 297–307. [Google Scholar] [CrossRef]
- Dixon, K.W. Pollination and restoration. Science 2009, 325, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Cusser, S.; Goodell, K. Diversity and distribution of floral resources influence the restoration of plant-pollinator networks on a reclaimed strip mine. Restor. Ecol. 2013, 26, 713–721. [Google Scholar] [CrossRef]
- Harmon, J.P.; Ganguli, A.C.; Solga, M.A. An overview of pollination in rangelands: Who, why, and how. Rangelands 2011, 33, 4–9. [Google Scholar] [CrossRef]
- National Research Council. Status of Pollinators in North America; National Academic Press: Washington, DC, USA, 2007; 322p. [Google Scholar]
- Wilson, E.O. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1987, 1, 344–346. [Google Scholar] [CrossRef]
- Losey, J.E.; Vaughan, M. The economic value of ecological services provided by insects. Bioscience 2006, 56, 311–323. [Google Scholar] [CrossRef]
- Noreiga, J.A.; Hortal, J.; Azcarate, F.M.; Berg, M.P.; Bonada, N.; Briones, M.J.; Del Toro, I.; Goulson, D.; Ibanez, S.; Landis, D.A.; et al. Research trends in ecosystem services provided by insects. Basic Appl. Ecol. 2018, 26, 8–23. [Google Scholar] [CrossRef]
- Dangles, O.; Casas, J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst. Serv. 2019, 35, 109–115. [Google Scholar] [CrossRef]
- Seibold, S.; Rammer, W.; Hothorn, T.; Seidl, R.; Ulyshen, M.D.; Lorz, J.; Cadotte, M.W.; Lindenmayer, D.B.; Adhikari, Y.P.; Aragon, R. The contribution of insects to global forest deadwood decomposition. Nature 2021, 597, 77–81. [Google Scholar] [CrossRef]
- Belovsky, G.E.; Slade, J.B. Insect herbivory accelerates nutrient cycling and increases plant production. Proc. Natl. Acad. Sci. USA 2000, 97, 14412–14417. [Google Scholar] [CrossRef]
- Tallamy, D. Bringing Nature Home: How Native Plants Sustain Wildlife in Our Gardens; Timber Press: Portland, OR, USA, 2009. [Google Scholar]
- Dainese, M.; Martin, E.A.; Aizen, M.A.; Albrecht, M.; Bartomeus, I.; Bommarco, R.; Carvalheiro, L.G.; Chaplin-Kramer, R.; Gagic, V.; Garibaldi, L.A. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 2019, 5, eaax0121. [Google Scholar] [CrossRef] [PubMed]
- Van Klink, R.; Bowler, D.E.; Gongalsky, K.B.; Swengel, A.B.; Gentile, A.; Chase, J.M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 2020, 368, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Grodsky, S.M.; Iglay, R.B.; Sorenson, C.E.; Moorman, C.E. Should invertebrates receive greater attention in wildlife research journals? J. Wildl. Manag. 2018, 79, 529–536. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Ochoa-Hueso, R.; Huang, Y.; Barry, K.E.; Gebler, A.; Guerra, C.A.; Hines, J.; Jochum, M.; Andraczek, K.; Bucher, S.F.; et al. Ecosystem consequences of invertebrate decline. Curr. Biol. 2023, 33, 4538–4547. [Google Scholar] [CrossRef] [PubMed]
- Tonietto, R.K.; Larkin, D.J. Habitat restoration benefits wild bees: A meta-analysis. J. Appl. Ecol. 2018, 55, 582–590. [Google Scholar] [CrossRef]
- Kimberling, D.N.; Karr, J.R.; Fore, L.S. Measuring human disturbance using terrestrial invertebrates in the shrub-steppe of eastern Washington (USA). Ecol. Indic. 2001, 1, 63–81. [Google Scholar] [CrossRef]
- Longcore, T. Terrestrial arthropods as indicators of ecological restoration success in coastal sage scrub (California, USA). Restor. Ecol. 2003, 11, 397–409. [Google Scholar] [CrossRef]
- Menz, M.M.H.; Phillips, R.D.; Winfree, R.; Kremen, C.; Aizen, M.A.; Johnson, S.D.; Dixon, K.W. Reconnecting plants and pollinators: Challenges in the restoration of pollination mutualisms. Trends Plant Sci. 2011, 16, 4–12. [Google Scholar] [CrossRef]
- Sylvain, Z.A.; Espeland, E.K.; Rand, T.A.; West, N.M.; Branson, D.H. Oilfield reclamation recovers productivity but not composition of arthropod herbivores and predators. Environ. Entomol. 2019, 48, 299–308. [Google Scholar] [CrossRef]
- Curran, M.F.; Robinson, T.J.; Guernsey, P.; Sorenson, J.; Crow, T.M.; Smith, D.I.; Stahl, P.D. Insect abundance and diversity respond favorably to vegetation communities on interim reclamation sites in a semi-arid natural gas field. Land 2022, 11, 527. [Google Scholar] [CrossRef]
- Curran, M.F.; Sorenson, J.R.; Craft, Z.A.; Crow, T.M.; Robinson, T.J.; Stahl, P.D. Ecological Restoration Practices within a Semi-arid Natural Gas Field Improve Insect Abundance and Diversity during Early and Late Growing Season. Animals 2022, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Society for Ecological International Science and Policy Working Group. The SER International Primer on Restoration Ecology; Society for Ecological Restoration International: Tucson, AZ, USA, 2004. [Google Scholar]
- Cagney, J.; Cox, S.E.; Booth, D.T. Comparison of point intercept and image analysis for monitoring rangeland composition and trend. Rangel. Ecol. Manag. 2011, 64, 309–315. [Google Scholar] [CrossRef]
- Curran, M.F.; Cox, S.E.; Robinson, T.J.; Strom, C.F.; Stahl, P.D. Combining spatially balanced sampling, route optimization and remote sensing to assess biodiversity response to reclamation practices on semi-arid well pads. Biodiversity 2020, 21, 171–181. [Google Scholar] [CrossRef]
- Curran, M.F.; Hodza, P.; Cox, S.E.; Lanning, S.G.; Robertson, B.L.; Robinson, T.J.; Stahl, P.D. Ground-level unmanned aerial system imagery coupled with spatially balanced sampling and route optimization to monitor rangeland vegetation. J. Vis. Exp. 2020, 160, e61052. [Google Scholar] [CrossRef]
- Booth, D.T.; Cox, S.E.; Berryman, R.D. Sampling digital imagery with ‘SamplePoint’. Environ. Monit. Assess 2006, 123, 97–108. [Google Scholar] [CrossRef]
- Ancin-Murguzur, F.J.; Munoz, L.; Monz, C.; Fauchald, P.; Hausner, V. Efficient sampling for ecosystem service supply assessment at a landscape scale. Ecosyst. People 2019, 15, 33–41. [Google Scholar] [CrossRef]
- Wenninger, E.J.; Inouye, R.S. Insect community response to plant diversity and productivity in a sagebrush-steppe ecosystem. J. Arid Environ. 2008, 72, 24–33. [Google Scholar] [CrossRef]
- Triplehorn, C.A.; Johnson, N.F. Borror and DeLong’s Introduction to the Study of Insects, 7th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2005. [Google Scholar]
- McAlpine, J.F.; Peterson, B.V.; Shewell, G.E.; Teskey, H.J.; Vockeroth, J.R.; Wood, D.M. Manual of Nearctic Diptera. Volume 1; CABI Digital Library: Wallingford, UK, 1981; No. 27. [Google Scholar]
- McCall, C.; Primack, R.B. Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. Am. J. Bot. 1992, 79, 434–442. [Google Scholar] [CrossRef]
- Solga, M.J.; Harmon, J.P.; Ganguli, A.C. Timing is everything: An overview of phenological changes to plants and their pollinators. Nat. Areas J. 2014, 34, 227–235. [Google Scholar] [CrossRef]
- Curran, M.F.; Summerfield, K.; Alexander, E.-J.; Lanning, S.G.; Schwyter, A.R.; Torres, M.L.; Schell, S.; Vaughan, K.; Robinson, T.J.; Smith, D.I. Use of 3-dimensional videography as a non-lethal way to improve visual insect sampling. Land 2020, 9, 340. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.Rproject.org/ (accessed on 1 March 2024).
- Walker, L.R.; del Moral, R. Primary Succession and Ecosystem Rehabilitation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Prach, K.; Walker, L.R. Four opportunities for studies of ecological succession. Trends Ecol. Evol. 2011, 26, 119–123. [Google Scholar] [CrossRef]
- Fuhlendorf, S.D.; Engle, D.M.; Elmore, R.D.; Limb, R.F.; Bidwell, T.G. Conservation of pattern and process: Developing an alternative paradigm of rangeland management. Rangel. Ecol. Mgmt. 2012, 65, 579–589. [Google Scholar] [CrossRef]
- Klebenow, D.A.; Gray, G.M. Food habits of juvenile sage grouse. Rangel. Ecol. Manag. J. Range Manag. Arch. 1968, 21, 80–83. [Google Scholar] [CrossRef]
- Drut, M.S.; Pyle, W.H.; Crawford, J.A. Diets and food selection of sage grouse chicks in Oregon. J. Range Mgmt. 1994, 47, 90–93. [Google Scholar] [CrossRef]
- Tallamy, D.W.; Shriver, W.G. Are declines in insects and insectivorous birds related? Condor 2021, 123, duaa059. [Google Scholar] [CrossRef]
- Tallamy, D.W. Do alien plants reduce insect biomass? Conserv. Biol. 2004, 18, 1689–1692. [Google Scholar] [CrossRef]
- Spafford, R.D.; Lortie, C.J. Sweeping beauty: Is grassland arthropod community composition effectively estimated by sweep netting? Ecol. Evol. 2013, 3, 3347–3358. [Google Scholar] [CrossRef]
- Copeland, S.M.; Davies, K.W.; Boyd, C.S. Sagebrush Ecosystems are More Than Artemisia: The Complex Issue of Degraded Understories in the Great Basin. Rangel. Ecol. Manag. 2024, 94, 184–194. [Google Scholar] [CrossRef]
Cover Type | Boulder | Riverside | Mesa | Warbonnet | Stewart Point |
---|---|---|---|---|---|
Bareground | 0.201 | 0.028 | 0.025 | 0.063 | 0.575 |
Forb | 0.130 | 0.253 | 0.291 | 0.202 | 0.057 |
Grass | 0.109 | 0.211 | 0.555 | 0.324 | 0.004 |
Litter | 0.109 | 0.483 | 0.505 | 0.375 | 0.850 |
Non-Native | 0.704 | 0.270 | 0.423 | 0.742 | NA |
Shrub | 0.223 | 0.047 | 0.603 | 0.065 | 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curran, M.F.; Allison, J.; Robinson, T.J.; Robertson, B.L.; Knudson, A.H.; Bott, B.M.M.; Bower, S.; Saleh, B.M. Insect Abundance and Richness Response to Ecological Reclamation on Well Pads 5–12 Years into Succession in a Semi-Arid Natural Gas Field. Diversity 2024, 16, 324. https://doi.org/10.3390/d16060324
Curran MF, Allison J, Robinson TJ, Robertson BL, Knudson AH, Bott BMM, Bower S, Saleh BM. Insect Abundance and Richness Response to Ecological Reclamation on Well Pads 5–12 Years into Succession in a Semi-Arid Natural Gas Field. Diversity. 2024; 16(6):324. https://doi.org/10.3390/d16060324
Chicago/Turabian StyleCurran, Michael F., Jasmine Allison, Timothy J. Robinson, Blair L. Robertson, Alexander H. Knudson, Bee M. M. Bott, Steven Bower, and Bobby M. Saleh. 2024. "Insect Abundance and Richness Response to Ecological Reclamation on Well Pads 5–12 Years into Succession in a Semi-Arid Natural Gas Field" Diversity 16, no. 6: 324. https://doi.org/10.3390/d16060324
APA StyleCurran, M. F., Allison, J., Robinson, T. J., Robertson, B. L., Knudson, A. H., Bott, B. M. M., Bower, S., & Saleh, B. M. (2024). Insect Abundance and Richness Response to Ecological Reclamation on Well Pads 5–12 Years into Succession in a Semi-Arid Natural Gas Field. Diversity, 16(6), 324. https://doi.org/10.3390/d16060324