Destiny of Two Caddisfly Species under Global Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Methods, Preservation, and Occurrence Data
2.2. Environmental Variables
2.3. Modelling Procedure
2.4. Effectiveness of Protected Areas
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function. Curr. Opin. Env. Sust. 2010, 2, 422–430. [Google Scholar] [CrossRef]
- Garcia–Moreno, J.; Harrison, I.J.; Dudgeon, D.; Clausnitzer, V.; Darwall, W.; Farrell, T.; Savy, C.K.; Tockner, K.; Tubbs, N. Sustaining freshwater biodiversity in the anthropocene. In The Global Water System in the Anthropocene; Bhaduri, A., Bogardi, J., Leentvaar, J., Marx, S., Eds.; Springer: Cham, Switzerland, 2014; pp. 247–270. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.j.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems. River. Res. Appl. 2005, 21, 849–864. [Google Scholar] [CrossRef]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Phil. Trans. R. Soc. B 2010, 365, 2093–2106. [Google Scholar] [CrossRef]
- Schmeller, D.S.; Loyau, A.; Bao, K.; Brack, W.; Chatzinotas, A.; De Vleeschouwer, F.; Friesen, J.; Gandois, L.; Hansson, S.V.; Haver, M.; et al. People, pollution and pathogens—Global change impacts in mountain freshwater ecosystems. Sci. Total. Environ. 2018, 622–623, 756–763. [Google Scholar] [CrossRef]
- Heino, J.; Virkkala, R.; Toivonen, H. Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biol. Rev. 2009, 84, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Foden, W.B.; Young, B.E.; Akcakaya, H.R.; Garcia, R.A.; Homan, A.; Stein, B.; Thomas, C.D.; Wheatley, C.J.; Bickford, D.; Carr, J.; et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e551. [Google Scholar] [CrossRef]
- Austin, M.P.; Van Niel, K.P. Improving species distribution models for climate change studies: Variable selection and scale. J. Biogeogr. 2011, 38, 1–8. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Domisch, S.; Jähnig, S.; Haase, P. Climate-change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshw. Biol. 2011, 56, 2009–2020. [Google Scholar] [CrossRef]
- Sánchez-Fernández, D.; Lobo, J.M.; Hernández–Manrique, O.L. Species distribution models that do not incorporate global data misrepresent potential distributions: A case study using Iberian diving beetles. Divers. Distrib. 2011, 17, 163–171. [Google Scholar] [CrossRef]
- Li, F.; Cai, Q.; Jiang, W.; Qu, X. The response of benthic macroinvertebrate communities to climate change: Evidence from subtropical mountain streams in Central China. Int. Rev. Hydrobiol. 2012, 97, 200–214. [Google Scholar] [CrossRef]
- Kusch, J. Interacting influences of climate factors and land cover types on the distribution of caddisflies (Trichoptera) in streams of a central European low mountain range. Insect. Conserv. Diver. 2015, 8, 92–101. [Google Scholar] [CrossRef]
- Múrria, C.; Sáinz-Bariáin, M.; Vogler, A.P.; Viza, A.; González, M.; Zamora-Muñoz, C. Vulnerability to climate change for two endemic high-elevation, low-dispersive Annitella species (Trichoptera) in Sierra Nevada, the southernmost high mountain in Europe. Insect. Conserv. Diver. 2020, 13, 283–295. [Google Scholar] [CrossRef]
- Clark, J.A.; May, R.M. Taxonomic bias in conservation research. Science 2002, 297, 191–192. [Google Scholar] [CrossRef]
- IUCN 2019. The IUCN Red List of Threatened Species. Version 2019-2. Available online: http://www.iucnredlist.org (accessed on 16 October 2019).
- Darwall, W.R.; Holland, R.A.; Smith, K.G.; Allen, D.; Brooks, E.G.; Katarya, V.; Pollock, C.M.; Shi, Y.; Clausnitzer, V.; Cumberlidge, N.; et al. Implications of bias in conservation research and investment for freshwater species. Conserv. Lett. 2011, 4, 474–482. [Google Scholar] [CrossRef]
- Rodrigues, A.S.L.; Brooks, T.M. Shortcuts for biodiversity conservation planning: The effectiveness of surrogates. Annu. Rev. Ecol. Syst. 2007, 38, 713–737. [Google Scholar] [CrossRef]
- Sánchez-Fernández, D.; Abellán, P.; Picazo, F.; Millán, A.; Ribera, I.; Lobo, J.M. Do protected areas represent species’ optimal climatic conditions? A test using Iberian water beetles. Divers. Distrib. 2013, 19, 1407–1417. [Google Scholar] [CrossRef]
- Rosso, A.; Aragón, P.; Acevedo, F.; Doadrio, I.; García-Barros, E.; Lobo, J.M.; Munguira, M.L.; Monserrat, V.J.; Palomo, J.; Pleguezuelos, J.M.; et al. Effectiveness of the Natura 2000 network in protecting Iberian endemic fauna. Anim. Conserv. 2018, 21, 262–271. [Google Scholar] [CrossRef]
- Malicky, H. Atlas of European Trichoptera, 2nd ed.; Springer: Dorderecht, The Netherlands, 2004; pp. 163, 298. [Google Scholar]
- Waringer, J.; Malicky, H.; Živić, I.; Vicentini, H. The larvae of the European Helicopsyche species (Trichoptera: Helicopsychidae). Zootaxa 2017, 4277, 561–572. [Google Scholar] [CrossRef]
- Waringer, J.; González, M.A.; Malicky, H. Discriminatory matrix for the larvae of the European Thremma species (Trichoptera: Thremmatidae). Zootaxa 2020, 4718, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Graf, W.; Murphy, J.; Dahl, J.; Zamora-Muñoz, C.; López Rodríguez, M.J. Distribution and ecological preferences of European freshwater organisms. Volume 1: Trichoptera; Schmidt-Kloiber, A.D., Hering, D., Eds.; Pensoft Publisher: Sofia, Bulgaria, 2008. [Google Scholar]
- Živić, I.; Marković, Z.; Simić, V.; Kučinić, M. New records of Helicopsyche bacescui (Trichoptera; Helicopsychidae) from the Balkan peninsula with notes on its habitat. Acta Zool. Acad. Sci. H 2009, 55, 77–87. [Google Scholar]
- Živić, I.; Bjelanović, K.; Simić, V.; Živić, M.; Žikić, V.; Marković, Z. New records of Thremma anomalum (Trichoptera; Uenoidae) from southeastern Europe with notes on its ecology. Entomol. News 2013, 123, 206–219. [Google Scholar] [CrossRef]
- Sipahiler, F. Five New Species of Trichoptera with the Faunistic List of Sinop and Samsun Provinces in Turkey (Glossosomatidae, Philopotamidae, Hydropsychidae, Sericostomatidae). Mun. Ent. Zool. 2012, 7, 1–17. [Google Scholar]
- Sipahiler, F. Three New Species of Trichoptera (Odontoceridae, Leptoceridae) and the Faunistic List for Zonguldak and Karabük Provinces in northwestern Turkey. Mun. Ent. Zool. 2014, 9, 542–553. [Google Scholar]
- Pankvelashvili, E.; Japoshvili, B.; Mumladze, L. New remarkable record of Helicopsyche bacescui Orghidan and Botosaneanu, 1953 (Trichoptera, Helicopsychidae) from Georgia. Aquat. Insects 2020, 41, 184–188. [Google Scholar] [CrossRef]
- Hering, D.; Schmidt-Kloiber, A.; Murphy, J.; Lücke, S.; Zamora–Muñoz, C.; López-Rodríguez, M.J.; Huber, T.; Graf, W. Potential impact of climate change on aquatic insects: A sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat. Sci. 2009, 71, 3–14. [Google Scholar] [CrossRef]
- Petrović, A. Possibilities of Using a Database in the Strategy of Conserving the Biodiversity of Inland Water Macroinvertebrates at a National Level. Ph.D. Thesis, Faculty of Science, University of Kragujevac, Kragujevac, Serbia, 2014. [Google Scholar]
- Kumanski, K. Contributions to the caddisfly fauna (Trichoptera) of the central-western part of the Balkan Peninsula. Lauterbornia 1997, 31, 73–82. [Google Scholar]
- Ujvárosi, L.; Robert, S.C.; Neu, P.; Robert, B. First revision of the Romanian caddisflies (Insecta: Trichoptera). Ferrantia 2008, 55, 110–124. [Google Scholar]
- Malicky, H. Lebensräume von Köcherfliegen (Trichoptera); Denisia; Biologiezentrum: Linz, Austria, 2014; Volume 34, pp. 1–280. [Google Scholar]
- Ibrahimi, H.; Kučinić, M.; Gashi, A.; Grapci–Kotori, L. The caddisfly fauna (Insecta, Trichoptera) of the rivers of the Black Sea basin in Kosovo with distributional data for some rare species. ZooKeys 2012, 182, 71–85. [Google Scholar] [CrossRef]
- Ibrahimi, H.; Kuçi, R.; Bilalli, A.; Gashi, E. First record of Triaenodes bicolor (Curtis, 1834) (Insecta: Trichoptera) from the Ecoregion Hellenic Western Balkans. Nat. Croat. 2017, 26, 197–204. [Google Scholar] [CrossRef]
- Rimcheska, B.; Slavevska–Stamenković, V.; Ibrahimi, H.; Smiljkov, S.; Ristovska, M.; Paunović, M. First Record of the Genus Helicopsyche von Siebold, 1856 (Trichoptera: Helicopsychidae) from the Republic of Macedonia. Acta Zool. Bulg. 2015, 67, 443–446. [Google Scholar]
- Slavevska–Stamenković, V.; Rimcheska, B.; Vidinova, Y.; Tyufekchieva, V.; Ristovska, R.; Smiljkov, S.; Paunović, M.; Prelić, D. New Data on Ephemeroptera, Plecoptera and Trichoptera from the Republic of Macedonia. Acta Zool. Bulg. 2016, 68, 199–206. [Google Scholar]
- Karaouzas, I.; Zawal, A.; Michonski, G.; Pešić, V. Contribution to the knowledge of the caddisfly fauna of Montenegro—New data and records from the karstic springs of Lake Skadar basin. Ecol. Montenegrina 2019, 22, 34–39. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Jones, C.; Hughes, J.K.; Bellouin, N.; Hardiman, S.C.; Jones, G.S.; Knight, J.; Liddicoat, S.; O’connor, F.M.; Andres, R.J.; Bell, C.; et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 2011, 4, 543–570. [Google Scholar] [CrossRef]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model Version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Moss, R.; Babiker, W.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions: Climate Change, Impacts, and Response Strategies. IPCC Expert Meeting Report; IPCC: Geneva, Switzerland, 2008. [Google Scholar]
- Corine Land Cover. CLC. 2012. Available online: http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 (accessed on 2 August 2018).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 5 July 2018).
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. DISMO: Species Distribution Modeling, R package Version 1.3–9; 2022. Available online: https://CRAN.R-project.org/package=dismo (accessed on 20 July 2023).
- Peterson, A.T.; Papes, M.; Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 2007, 30, 550–560. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudik, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Malicky, H. A progress report on studies on Trichoptera of the eastern Mediterranean Islands. In Proceedings of the First International Symposium on Trichoptera, Lunz am See, Austria, 16 September 1976. [Google Scholar]
- Poff, N.L. Regional hydrologic response to climate change: An ecological perspective. In Global Climate Change and Freshwater Ecosystems; Firth, P., Fisher, S.G., Eds.; Springer: New York, NY, USA, 1992; pp. 88–115. [Google Scholar]
- Williams, D.D.; Read, A.T.; Moore, K.A. The biology and zoogeography of Helicopsyche borealis (Trichoptera:Helicopsychidae): A Nearctic representative of a tropical genus. Can. J. Zool. 1983, 61, 2288–2299. [Google Scholar] [CrossRef]
- Leathers, K.; Herbst, D.; Safeeq, M.; Ruhi, A. Dynamic, downstream-propagating thermal vulnerability in a mountain stream network: Implications for biodiversity in the face of climate change. Limno. Oceanogr. 2022, 68, S101–S114. [Google Scholar] [CrossRef]
- Macadam, C.R.; England, J.; Chadd, R. The vulnerability of British aquatic insects to climate change. Knowl. Manag. Aquat. Ecosyst. 2022, 423, 3. [Google Scholar] [CrossRef]
- Williams, S.E.; Shoo, L.P.; Isaac, J.L.; Hoffmann, A.A.; Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 2008, 6, e325. [Google Scholar] [CrossRef] [PubMed]
- Landeiro, V.L.; Bini, L.M.; Melo, A.S.; Pes, A.M.O.; Magnusson, W.E. The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshw. Biol. 2012, 57, 1554–1564. [Google Scholar] [CrossRef]
- Collier, K.J.; Smith, B.J. Dispersal of adult caddisflies (Trichoptera) into forests alongside three New Zealand streams. Hydrobiologia 1998, 361, 53–65. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Lobo, J.M.; Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 2008, 14, 885–890. [Google Scholar] [CrossRef]
- Araújo, M.; Alagador, D.; Cabeza, M.; Nogués-Bravo, D.; Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 2011, 14, 484–492. [Google Scholar] [CrossRef]
- Radenković, S.; Schweiger, O.; Milić, D.; Harpke, A.; Vujić, A. Living on the edge: Forecasting the trends in abundance and distribution of the largest hoverfly genus (Diptera: Syrphidae) on the Balkan Peninsula under future climate change. Biol. Conserv. 2017, 212, 216–229. [Google Scholar] [CrossRef]
- Milić, D.; Radenković, S.; Radišić, D.; Andrić, A.; Nikolić, T.; Vujić, A. Stability and changes in the distribution of Pipiza hoverflies (Diptera, Syrphidae) in Europe under projected future climate conditions. PLoS ONE 2019, 14, e0221934. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Tierno de Figueroa, J.M.; López–Rodríguez, M.J.; Lorenz, A.; Graf, W.; Schmidt-Kloiber, A.; Hering, D. Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodivers. Conserv. 2010, 19, 1269–1277. [Google Scholar] [CrossRef]
- Turak, E.; Dudgeon, D.; Harrison, I.J.; Freyhof, J.; De Wever, A.; Revenga, C.; Flink, S. Observations of inland water biodiversity: Progress, needs and priorities. In The GEO Handbook on Biodiversity Observation Networks; Walters, A., Scholes, R.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 165–186. [Google Scholar]
- Rulebook on Declaration and Protection of Protected and Strictly Protected Species of Plants, Animals and Fungi, Official Gazette of RS, No. 5/2010. Available online: https://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2010/5/3/reg (accessed on 20 July 2023).
- Arribas, P.; Abellán, P.; Velasco, J.; Bilton, D.T.; Millán, A.; Sánchez-Fernández, D. Evaluating drivers of vulnerability to climate change: A guide for insect conservation strategies. Glob. Chang. Biol. 2012, 18, 2135–2146. [Google Scholar] [CrossRef]
- Schmidt-Kloiber, A.; Neu, P.J.; Malicky, M.; Pletterbauer, F.; Malicky, H.; Graf, W. Aquatic biodiversity in Europe: A unique dataset on the distribution of Trichoptera species with important implications for conservation. Hydrobiologia 2017, 797, 11–27. [Google Scholar] [CrossRef]
- Bănărescu, P.M. Distribution pattern of the aquatic fauna of the Balkan Peninsula. In Balkan Biodiversity: Pattern and Process in the European Hotspot; Griffiths, H.I., Kryštufek, B., Reed, J.M., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 203–217. [Google Scholar]
- Bona, F.; Bo, T.; Doretto, A.; Falasco, E.; Zoppi, M.; Fenoglio, S. Are protected areas effective in preserving Alpine stream morphology and biodiversity? A field study in the oldest Italian National Park. River Res. Appl. 2023, 39, 942–953. [Google Scholar] [CrossRef]
- Wuethrich, B. When protecting one species hurts another. Science 2000, 289, 383–385. [Google Scholar] [CrossRef]
- Nieto, C.; Ovando, X.M.; Loyola, R.; Izquierdo, A.; Romero, F.; Molineri, C.; Rodríguez, J.; Rueda Martín, P.; Fernández, H.; Manzo, V.; et al. The role of macroinvertebrates for conservation of freshwater systems. Ecol. Evol. 2017, 7, 5502–5513. [Google Scholar] [CrossRef]
Species | Feature Classes | Regularization Multiplier | TSS | AICc | Parameters | Kappa |
---|---|---|---|---|---|---|
T. anomalum | LQHPT | 4 | 0.6734059 | 4231.249 | 28 | 0.619919 |
H. bacescui | LQHPT | 3.5 | 0.7419354 | 2196.356 | 31 | 0.6402334 |
Environmental Variables | H. bacescui | T. anomalum |
---|---|---|
Mean Diurnal Range (BIO2) | - | −4.08 |
Temperature Seasonality (BIO4) | −15.67 | - |
Mean Temperature of Wettest Quarter (BIO8) | 20.53 | 2.84 |
Mean Temperature of Driest Quarter (BIO9) | 13.13 | 4.08 |
Precipitation of Wettest Month (BIO13) | 22.97 | - |
Precipitation Seasonality (BIO15) | 13.06 | 1.21 |
Precipitation of Coldest Quarter (BIO19) | - | 9.22 |
Elevation | 11.92 | 23.06 |
Slope | 6.45 | 50.32 |
Corine Land Cover | 1.36 | 5.18 |
Species | Climate Model | RCP | 2050 | 2070 |
---|---|---|---|---|
H. bacescui | HadGEM2-ES | 2.6 | −56.69 | −45.83 |
4.5 | −67.68 | −49.56 | ||
6.0 | −40.51 | −47.58 | ||
8.5 | −36.82 | −31.10 | ||
CCSM4 | 2.6 | −39.07 | −24.46 | |
4.5 | −27.97 | −25.31 | ||
6.0 | −40.50 | −24.21 | ||
8.5 | −31.59 | −38.39 | ||
T. anomalum | HadGEM2-ES | 2.6 | 46.16 | 45.27 |
4.5 | 45.59 | 57.75 | ||
6.0 | 39.90 | 54.94 | ||
8.5 | 54.14 | 71.14 | ||
CCSM4 | 2.6 | 21.07 | 19.40 | |
4.5 | 35.39 | 35.35 | ||
6.0 | 28.07 | 35.12 | ||
8.5 | 31.48 | 45.46 |
H. bacescui | T. anomalum | ||||
---|---|---|---|---|---|
Climate Model | RCP | 2050 | 2070 | 2050 | 2070 |
HadGEM2-ES | 2.6 | 5.28 | 7.81 | 25.91 | 25.60 |
4.5 | 7.23 | 3.85 | 25.29 | 26.79 | |
6.0 | 6.62 | 4.00 | 24.41 | 26.38 | |
8.5 | 5.33 | 5.60 | 26.33 | 27.63 | |
CCSM4 | 2.6 | 5.56 | 7.45 | 22.26 | 21.65 |
4.5 | 7.23 | 7.68 | 24.47 | 24.49 | |
6.0 | 6.62 | 8.94 | 23.81 | 24.62 | |
8.5 | 4.93 | 5.60 | 23.62 | 25.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, K.; Milić, D.; Ranković Perišić, M.; Miličić, M.; Živić, I. Destiny of Two Caddisfly Species under Global Climate Change. Diversity 2023, 15, 995. https://doi.org/10.3390/d15090995
Stojanović K, Milić D, Ranković Perišić M, Miličić M, Živić I. Destiny of Two Caddisfly Species under Global Climate Change. Diversity. 2023; 15(9):995. https://doi.org/10.3390/d15090995
Chicago/Turabian StyleStojanović, Katarina, Dubravka Milić, Milica Ranković Perišić, Marija Miličić, and Ivana Živić. 2023. "Destiny of Two Caddisfly Species under Global Climate Change" Diversity 15, no. 9: 995. https://doi.org/10.3390/d15090995
APA StyleStojanović, K., Milić, D., Ranković Perišić, M., Miličić, M., & Živić, I. (2023). Destiny of Two Caddisfly Species under Global Climate Change. Diversity, 15(9), 995. https://doi.org/10.3390/d15090995