Observations on the Antagonistic Relationships between Fungi, Archaea, and Bacteria in Livingston Island (Maritime Antarctica) with the Use of Amplicon-Based Metagenomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Sampling Methods
2.2. DNA Extraction
2.3. Metagenomic Sequencing
2.4. Data Processing and Operational Taxonomic Units (OTUs) Analyses
2.5. Antagonism Analyses and Relative Measuring
2.6. Pearson and Spearman Correlation Analyses
3. Results
3.1. Sequencing Statistics and Alpha Diversity Indices
3.2. Antagonism Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barker, P.F.; Filippelli, G.M.; Florindo, F.; Martin, E.E.; Scher, H.D. Onset and role of the Antarctic Circumpolar Current. Deep Sea Res. Part II: Top. Stud. Oceanogr. 2007, 54, 2388–2398. [Google Scholar] [CrossRef]
- Picazo, A.; Rochera, C.; Villaescusa, J.A.; Miralles-Lorenzo, J.; Velázquez, D.; Quesada, A.; Camacho, A. Bacterioplankton Community Composition Along Environmental Gradients in Lakes From Byers Peninsula (Maritime Antarctica) as Determined by Next-Generation Sequencing. Front. Microbiol. 2019, 10, 908. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, J.-H.; Lim, J.-H.; Jeong, J.-H.; Heo, J.-M.; Kim, I.-N. Distribution and Control of Bacterial Community Composition in Marian Cove Surface Waters, King George Island, Antarctica during the Summer of 2018. Microorganisms 2020, 8, 1115. [Google Scholar] [CrossRef]
- Bej, A.K.; Mojib, N. Cold adaptation in Antarctic biodegradative microorganisms. In Polar Microbiology: The Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments; CRC Press: Boca Raton, FL, USA, 2009; pp. 157–177. [Google Scholar]
- Robinson, C.H. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 2001, 151, 341–353. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef]
- Peay, K.G.; Kennedy, P.G.; Talbot, J.M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 2016, 14, 434–447. [Google Scholar] [CrossRef]
- Li, X.; Garbeva, P.; Liu, X.; klein Gunnewiek, P.J.A.; Clocchiatti, A.; Hundscheid, M.P.J.; Wang, X.; de Boer, W. Volatile-mediated antagonism of soil bacterial communities against fungi. Environ. Microbiol. 2020, 22, 1025–1035. [Google Scholar] [CrossRef]
- Coleine, C.; Biagioli, F.; de Vera, J.P.; Onofri, S.; Selbmann, L. Endolithic microbial composition in Helliwell Hills, a newly investigated Mars-like area in Antarctica. Environ. Microbiol. 2021, 23, 4002–4016. [Google Scholar] [CrossRef]
- Fernández, G.C.; Lecomte, K.; Vignoni, P.; Rueda, E.S.; Coria, S.H.; Lirio, J.M.; Mlewski, E.C. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems from James Ross Archipelago (West Antarctica). Polar Biol. 2022, 45, 405–418. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef]
- Chao, A. Non-parametric estimation of the classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Chao, A.; Lee, S.M. Estimating the Number of Classes via Sample Coverage. J. Am. Stat. Assoc. 1992, 87, 210–217. [Google Scholar] [CrossRef]
- Chao, A.; Ma, M.C.; Yang, M.C.K. Stopping Rules and Estimation for Recapture Debugging with Unequal Failure Rates. Biometrika 1993, 80, 193–201. [Google Scholar] [CrossRef]
- Lemos, L.N.; Fulthorpe, R.R.; Triplett, E.W.; Roesch, L.F.W. Rethinking microbial diversity analysis in the high throughput sequencing era. J. Microbiol. Methods 2011, 86, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Magurran, A. Measursuring Biological Diversity; Blackwelll Publisher Company: Hoboken, NJ, USA, 2004. [Google Scholar]
- Lundberg, D.S.; Yourstone, S.; Mieczkowski, P.; Jones, C.D.; Dangl, J.L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 2013, 10, 999–1002. [Google Scholar] [CrossRef]
- Kim, B.R.; Shin, J.; Guevarra, R.; Lee, J.H.; Kim, D.W.; Seol, K.H.; Lee, J.H.; Kim, H.B.; Isaacson, R. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Caporaso, J.G.; Jiang, X.-T.; Sheng, H.-F.; Huse, S.M.; Rideout, J.R.; Edgar, R.C.; Kopylova, E.; Walters, W.A.; Knight, R.; et al. Stability of operational taxonomic units: An important but neglected property for analyzing microbial diversity. Microbiome 2015, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Ciccazzo, S.; Esposito, A.; Borruso, L.; Brusetti, L. Microbial communities and primary succession in high altitude mountain environments. Ann. Microbiol. 2016, 66, 43–60. [Google Scholar] [CrossRef]
- Ni, G.; Lappan, R.; Hernández, M.; Santini, T.; Tomkins, A.G.; Greening, C. Functional basis of primary succession: Traits of the pioneer microbes. Environ. Microbiol. 2023, 25, 171–176. [Google Scholar] [CrossRef]
- Gyeong, H.; Hyun, C.-U.; Kim, S.C.; Tripathi, B.M.; Yun, J.; Kim, J.; Kang, H.; Kim, J.H.; Kim, S.; Kim, M. Contrasting early successional dynamics of bacterial and fungal communities in recently deglaciated soils of the maritime Antarctic. Mol. Ecol. 2021, 30, 4231–4244. [Google Scholar] [CrossRef]
- Garrido-Benavent, I.; Pérez-Ortega, S.; Durán, J.; Ascaso, C.; Pointing, S.B.; Rodríguez-Cielos, R.; Navarro, F.; de los Ríos, A. Differential Colonization and Succession of Microbial Communities in Rock and Soil Substrates on a Maritime Antarctic Glacier Forefield. Front. Microbiol. 2020, 11, 126. [Google Scholar] [CrossRef]
- Lekevičius, E. Appearance of Modern Ecological Pyramids: Summing Up. In Biodiversity: Maintenance, Function, Origin, and Self-Organisation into Life-Support Systems; Lekevičius, E., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 197–211. [Google Scholar] [CrossRef]
- Franzetti, A.; Navarra, F.; Tagliaferri, I.; Gandolfi, I.; Bestetti, G.; Minora, U.; Azzoni, R.S.; Diolaiuti, G.; Smiraglia, C.; Ambrosini, R. Temporal variability of bacterial communities in cryoconite on an alpine glacier. Environ. Microbiol. Rep. 2017, 9, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, M.A.; Pérez-Ortega, S.; Pointing, S.B.; Allan Green, T.G.; Pintado, A.; Rozzi, R.; Sancho, L.G.; de los Ríos, A. Microbial succession dynamics along glacier forefield chronosequences in Tierra del Fuego (Chile). Polar Biol. 2017, 40, 1939–1957. [Google Scholar] [CrossRef]
- Franzetti, A.; Pittino, F.; Gandolfi, I.; Azzoni, R.S.; Diolaiuti, G.; Smiraglia, C.; Pelfini, M.; Compostella, C.; Turchetti, B.; Buzzini, P.; et al. Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps. FEMS Microbiol. Ecol. 2020, 96, fiaa165. [Google Scholar] [CrossRef]
Samples | Environment | Description | Coordinates |
---|---|---|---|
Solid samples (S) | |||
S02 | Fresh water lagoon | Submerged rocks, microbial mat | −62.641324, −60.368854 |
S09, S10, S11, S21, S23 | Meltwater ponds | Submerged rocks, microbial mats | −62.641450, −60.356733 |
S07, S19 | Sea Lion Tarn | Submerged rocks, microbial mats | −62.647727, −60.353677 |
S17 | Meltwater current inside the base | Submerged rocks, microbial mat | −62.641241, −60.361171 |
S20 | Sea Lion Tarn | Macroalgae surface, microbial mat | −62.647727, −60.353677 |
S13 | Lithotelm at Hannah Point | Sludge biomass | −62.653262, −60.607902 |
S22 | Unnamed freshwater lake | Submerged rock, sludge biomass | −62.640819, −60.350725 |
S12 | Patch of vegetation near the nameless lake | Soil | −62.640819, −60.350725 |
S18 | Sea Lion Tarn | Sediment | −62.647727, −60.353677 |
Water samples (W) | |||
W01 | Fresh water lagoon | Fresh water | −62.641324, −60.368854 |
W02 | Sea Lion Tarn | Fresh water | −62.647727, −60.353677 |
W05 | Pelagic zone of Johnson Dock | Marine water | −62.659572, −60.370434 |
W06 | Littoral zone of South Bay | Marine water | −62.638681, −60.367835 |
Sample | Total Tags | OTUs | Shannon | Simpson | Chao1 | ACE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | |
S02 | 108303 | 39141 | 94003 | 599 | 563 | 1355 | 4.888 | 5.320 | 6.275 | 0.891 | 0.938 | 0.942 | 697.250 | 575.562 | 1325.202 | 644.266 | 582.952 | 1371.986 |
S07 | 119964 | 42644 | 84660 | 526 | 441 | 1077 | 3.639 | 4.157 | 6.010 | 0.739 | 0.823 | 0.943 | 562.544 | 447.338 | 1003.306 | 576.516 | 466.759 | 1041.073 |
S09 | 113287 | 45224 | 93056 | 390 | 709 | 920 | 4.579 | 3.521 | 3.455 | 0.917 | 0.659 | 0.682 | 440.429 | 700.038 | 989.007 | 445.363 | 756.005 | 1010.778 |
S10 | 104399 | 47252 | 63121 | 509 | 801 | 792 | 3.857 | 5.213 | 5.967 | 0.821 | 0.894 | 0.959 | 578.200 | 854.182 | 789.629 | 555.830 | 875.150 | 798.890 |
S11 | 83007 | 56071 | 104444 | 464 | 803 | 758 | 4.803 | 4.807 | 3.541 | 0.931 | 0.889 | 0.699 | 474.684 | 993.260 | 794.219 | 476.334 | 986.739 | 803.751 |
S12 | 126350 | 38224 | 84187 | 677 | 970 | 1959 | 4.892 | 6.117 | 7.776 | 0.891 | 0.935 | 0.980 | 758.261 | 997.560 | 1936.242 | 779.822 | 994.997 | 1957.808 |
S13 | 127940 | 32805 | 86878 | 467 | 756 | 989 | 3.218 | 6.811 | 6.573 | 0.730 | 0.976 | 0.972 | 599.820 | 751.688 | 958.425 | 570.035 | 767.540 | 975.776 |
S17 | 169009 | 42381 | 100712 | 506 | 387 | 464 | 3.356 | 2.091 | 0.872 | 0.744 | 0.527 | 0.156 | 566.125 | 360.000 | 501.726 | 563.556 | 392.774 | 518.494 |
S18 | 109955 | 38800 | 104705 | 508 | 703 | 999 | 3.566 | 5.533 | 4.262 | 0.806 | 0.935 | 0.729 | 549.721 | 696.966 | 1079.174 | 558.794 | 722.050 | 1083.829 |
S19 | 160873 | 40505 | 97775 | 787 | 554 | 1055 | 4.247 | 5.170 | 5.366 | 0.826 | 0.942 | 0.932 | 778.059 | 581.346 | 1136.078 | 805.678 | 590.759 | 1119.067 |
S20 | 120389 | 32799 | 98326 | 543 | 324 | 1209 | 3.742 | 2.203 | 2.252 | 0.829 | 0.470 | 0.428 | 626.217 | 308.983 | 1288.044 | 641.587 | 319.270 | 1336.556 |
S21 | 148086 | 55083 | 90215 | 391 | 408 | 887 | 2.545 | 2.862 | 2.799 | 0.604 | 0.687 | 0.684 | 385.549 | 469.600 | 836.520 | 401.038 | 496.508 | 915.860 |
S22 | 65967 | 76305 | 88563 | 133 | 836 | 1105 | 1.827 | 5.095 | 4.903 | 0.498 | 0.926 | 0.865 | 129.441 | 885.269 | 1044.691 | 131.693 | 882.408 | 1094.848 |
S23 | 83584 | 65897 | 102063 | 494 | 724 | 1111 | 5.074 | 4.448 | 3.978 | 0.943 | 0.859 | 0.821 | 491.774 | 679.129 | 1301.684 | 484.776 | 696.083 | 1288.961 |
W01 | 110722 | 32349 | 92749 | 708 | 546 | 1294 | 5.987 | 3.897 | 5.955 | 0.963 | 0.769 | 0.941 | 756.450 | 536.670 | 1196.763 | 759.495 | 550.773 | 1304.621 |
W02 | 126520 | 30704 | 93799 | 698 | 682 | 1662 | 4.246 | 4.616 | 5.799 | 0.757 | 0.884 | 0.938 | 771.759 | 613.806 | 1600.936 | 773.188 | 634.555 | 1685.559 |
W05 | 125937 | 38998 | 100912 | 560 | 567 | 915 | 4.355 | 4.660 | 4.740 | 0.903 | 0.906 | 0.910 | 616.724 | 581.394 | 1008.050 | 629.018 | 605.718 | 1040.591 |
W06 | 88052 | 34246 | 92969 | 361 | 583 | 1597 | 2.312 | 4.655 | 6.110 | 0.559 | 0.902 | 0.957 | 384.800 | 568.860 | 1574.371 | 387.693 | 584.415 | 1665.360 |
Average value | 116241 | 43857 | 92952 | 518 | 631 | 1119 | 3.952 | 4.510 | 4.810 | 0.797 | 0.829 | 0.808 | 564.878 | 644.536 | 1131.337 | 565.816 | 661.414 | 1167.434 |
Sample | Total Tags | OTUs | Shannon | Simpson | Chao1 | ACE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | Fungi | Archaea | Bacteria | |
S02 | − | − | + | + | − | − | + | + | + | + | + | + | + | + | + | + | + | + |
S07 | + | + | − | + | − | + | − | + | + | + | + | + | − | − | − | + | − | − |
S09 | − | + | + | − | + | − | + | − | − | + | − | − | − | + | − | − | + | − |
S10 | − | + | − | + | + | − | − | + | + | + | + | + | + | + | − | + | + | − |
S11 | − | + | + | − | + | − | + | + | − | + | + | − | − | + | − | − | + | − |
S12 | + | + | − | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
S13 | + | − | − | − | + | − | − | + | + | − | + | + | + | + | − | + | + | − |
S17 | + | + | + | + | − | − | − | − | − | + | − | − | + | − | − | − | − | − |
S18 | − | − | + | + | + | − | − | + | − | + | + | − | + | + | + | + | + | − |
S19 | + | − | + | + | − | + | + | + | + | + | + | + | + | − | + | + | − | + |
S20 | + | − | + | + | − | + | − | − | − | + | − | − | + | − | + | + | − | + |
S21 | + | + | + | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
S22 | − | + | − | − | + | + | − | + | + | − | + | + | − | + | − | − | + | − |
S23 | − | + | + | + | + | − | + | + | − | + | + | + | + | + | + | − | + | + |
W01 | + | − | − | + | − | + | + | − | + | + | − | + | + | − | + | + | − | + |
W02 | + | − | + | + | + | + | + | + | + | − | + | + | + | − | + | + | − | + |
W05 | + | + | + | + | − | − | + | + | + | + | + | + | − | − | − | + | − | − |
W06 | − | − | + | − | + | + | − | + | + | − | + | + | − | − | + | − | − | + |
Total Tags | OTUs | Shannon | Simpson | Chao1 | ACE | |
---|---|---|---|---|---|---|
Number of cases | ||||||
Fungi vs. Archaea | 10 | 12 | 8 | 8 | 8 | 10 |
Fungi vs. Bacteria | 10 | 8 | 8 | 9 | 4 | 7 |
Archaea vs. Bacteria | 10 | 10 | 4 | 3 | 10 | 11 |
Percentages of cases | ||||||
Fungi vs. Archaea | 56% | 67% | 44% | 44% | 44% | 56% |
Fungi vs. Bacteria | 56% | 44% | 44% | 50% | 22% | 39% |
Archaea vs. Bacteria | 56% | 56% | 22% | 17% | 56% | 61% |
Community Correlation | Correlation Coefficient | Effective Tags | OTUs | Shannon | Simpson | Chao1 | ACE |
---|---|---|---|---|---|---|---|
Fungi–Archaea | Pearson | −0.481 * | −0.137 | 0.071 | −0.029 | −0.179 | −0.202 |
Spearman | −0.389 | −0.29 | 0.055 | −0.151 | −0.115 | −0.201 | |
Archaea–Bacteria | Pearson | −0.003 | 0.29 | 0.802 * | 0.833 * | 0.17 | 0.108 |
Spearman | 0.034 | 0.057 | 0.688 * | 0.618 * | −0.022 | −0.057 | |
Fungi–Bacteria | Pearson | 0.06 | 0.31 | 0.187 | 0.02 | 0.344 | 0.341 |
Spearman | −0.084 | 0.375 | 0.11 | −0.136 | 0.395 | 0.455 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimov, S.G.; Doytchinov, V.V.; Neykov, N.; Muleshkova, T.; Kenderov, L.; Ilieva, R.; Georgieva Miteva, D.; Kitanova, M.; Peykov, S.; Iliev, M. Observations on the Antagonistic Relationships between Fungi, Archaea, and Bacteria in Livingston Island (Maritime Antarctica) with the Use of Amplicon-Based Metagenomics. Diversity 2024, 16, 56. https://doi.org/10.3390/d16010056
Dimov SG, Doytchinov VV, Neykov N, Muleshkova T, Kenderov L, Ilieva R, Georgieva Miteva D, Kitanova M, Peykov S, Iliev M. Observations on the Antagonistic Relationships between Fungi, Archaea, and Bacteria in Livingston Island (Maritime Antarctica) with the Use of Amplicon-Based Metagenomics. Diversity. 2024; 16(1):56. https://doi.org/10.3390/d16010056
Chicago/Turabian StyleDimov, Svetoslav G., Vesselin V. Doytchinov, Neyko Neykov, Tsvetana Muleshkova, Lyubomir Kenderov, Ralitsa Ilieva, Dimitrina Georgieva Miteva, Meglena Kitanova, Slavil Peykov, and Mihail Iliev. 2024. "Observations on the Antagonistic Relationships between Fungi, Archaea, and Bacteria in Livingston Island (Maritime Antarctica) with the Use of Amplicon-Based Metagenomics" Diversity 16, no. 1: 56. https://doi.org/10.3390/d16010056
APA StyleDimov, S. G., Doytchinov, V. V., Neykov, N., Muleshkova, T., Kenderov, L., Ilieva, R., Georgieva Miteva, D., Kitanova, M., Peykov, S., & Iliev, M. (2024). Observations on the Antagonistic Relationships between Fungi, Archaea, and Bacteria in Livingston Island (Maritime Antarctica) with the Use of Amplicon-Based Metagenomics. Diversity, 16(1), 56. https://doi.org/10.3390/d16010056