Substrate Preferences and Interspecific Affinities of Antarctic Macroalgae: Insights from Maxwell Bay, King George Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Samplings
2.2. Data Processing and Analysis
2.2.1. Macroalgal Assemblage and Significant Species
2.2.2. Variability of Substrate Composition by Significant Species
2.2.3. Affinity from the Synchronous Occurrence of Macroalgae
- High affinity (++): greater than twice the expected frequency;
- Medium affinity (+): greater than the expected frequency;
- Low affinity (-): less than the expected frequency;
- Very low affinity (--): less than half the expected frequency.
2.2.4. The Combination of Substrate Composition Similarity and Affinity
3. Results
3.1. Macroalgal Assemblage and Habitat Structure
3.2. Substrate Composition Characteristics by Significant Species
3.3. Affinity among Significant Species
3.4. The Combination of Substrate Composition Similarity and Affinity
4. Discussion
4.1. Habitat Characteristics and Affinity of Pioneer Species: Palmaria decipiens and Monostroma hariotii
4.2. Interconnected Core Group within Significant Species
4.3. Desmarestia spp.: Similar but Not Together
4.4. What Can Be Discerned from Substrate Composition Similarity and Affinity?
4.5. Additional Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, X.; Xiao, J.; Xu, Q.; Fan, S.; Wang, Z.; Wang, X.; Zhang, X. Distribution and species diversity of the floating green macroalgae and micro-propagules in the Subei Shoal, southwestern Yellow Sea. PeerJ 2020, 8, e10538. [Google Scholar] [CrossRef] [PubMed]
- Oyesiku, O.O.; Egunyomi, A. Identification and chemical studies of pelagic masses of Sargassum natans (Linnaeus) Gaillon and S. fluitans (Borgessen) Borgesen (brown algae), found offshore in Ondo State, Nigeria. Afr. J. Biotechnol. 2014, 13, 1188–1193. [Google Scholar] [CrossRef]
- Davis, D.; Simister, R.; Campbell, S.; Marston, M.; Bose, S.; McQueen-Mason, S.J.; Gomez, L.D.; Gallimore, W.A.; Tonon, T. Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. Sci. Total Environ. 2021, 762, 143134. [Google Scholar] [CrossRef]
- Richardson, M.G. The distribution of Antarctic marine macro-algae related to depth and substrate. Br. Antarct. Surv. Bull. 1979, 49, 1–13. [Google Scholar]
- Klöser, H.; Quartino, M.L.; Wiencke, C. Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiologia 1996, 333, 1–17. [Google Scholar] [CrossRef]
- Shunatova, N.; Nikishina, D.; Ivanov, M.; Berge, J.; Renaud, P.E.; Ivanova, T.; Granovitch, A. The longer the better: The effect of substrate on sessile biota in Arctic kelp forests. Polar Biol. 2018, 41, 993–1011. [Google Scholar] [CrossRef]
- Clayton, M.N. Propagules of marine macroalgae: Structure and development. Brit. Phycol. J. 1992, 27, 219–232. [Google Scholar] [CrossRef]
- Wiencke, C.; Clayton, M. Antarctic seaweeds. In Synopses of the Antarctic benthos; Wagele, J., Sieg, J., Eds.; Gantner: Ruggell, Lichtenstein, 2002; Volume 9, p. 239. [Google Scholar]
- Dudley, T.L.; D’Antonio, C.M. The effects of substrate texture, grazing, and disturbance on macroalgal establishment in streams. Ecology 1991, 72, 297–309. [Google Scholar] [CrossRef]
- Harlin, M.; Lindbergh, J. Selection of substrata by seaweeds: Optimal surface relief. Mar. Biol. 1977, 40, 33–40. [Google Scholar] [CrossRef]
- Quartino, M.; Klöser, H.; Schloss, I.; Wiencke, C. Biomass and associations of benthic marine macroalgae from the inner Potter Cove (King George Island, Antarctica) related to depth and substrate. Polar Biol. 2001, 24, 349–355. [Google Scholar] [CrossRef]
- Brouwer, P.E.; Geilen, E.; Gremmen, N.J.; Lent, F.v. Biomass, cover and zonation pattern of sublittoral macroalgae at Signy Island, South Orkney Islands, Antarctica. Bot. Mar. 1995, 38, 259–270. [Google Scholar] [CrossRef]
- Zainee, N.F.A.; Ismail, A.; Taip, M.E.; Ibrahim, N.; Ismail, A. Habitat preference of seaweeds at a tropical island of southern Malaysia. Songklanakarin J. Sci. Technol. 2019, 41, 1171–1177. [Google Scholar]
- Hay, M.E. Herbivory, algal distribution, and the maintenance of between-habitat diversity on a tropical fringing reef. Am. Nat. 1981, 118, 520–540. [Google Scholar] [CrossRef]
- Kang, J.C.; Lee, H.W.; Ko, Y.W.; Kim, M.S. Phase shift in vertical distribution of macroalgal assemblages on Udo Islet, Jeju, Korea, after a decade of revisiting. Ocean Sci. J. 2023, 58, 24. [Google Scholar] [CrossRef]
- Ocaranza-Barrera, P.; González-Wevar, C.A.; Guillemin, M.-L.; Rosenfeld, S.; Mansilla, A. Molecular divergence between Iridaea cordata (Turner) Bory de Saint-Vincent from the Antarctic Peninsula and the Magellan region. J. Appl. Phycol. 2019, 31, 939–949. [Google Scholar] [CrossRef]
- Ko, Y.W.; Lee, D.S.; Kim, S.; Kim, J.H.; Choi, H.-G. The rapid shift of intertidal macroalgal assemblage from vertical shoreline profiles in Barton Peninsula, King George Island, Antarctica during summer. Polar Sci. 2023, 35, 100927. [Google Scholar] [CrossRef]
- Dubrasquet, H.; Reyes, J.; Sanchez, R.P.; Valdivia, N.; Guillemin, M.-L. Molecular-assisted revision of red macroalgal diversity and distribution along the Western Antarctic Peninsula and South Shetland Islands. Cryptogam. Algol. 2018, 39, 409–429. [Google Scholar] [CrossRef]
- Ko, Y.W.; Lee, D.S.; Kim, J.H.; Ha, S.-Y.; Kim, S.; Choi, H.-G. The glacier melting process is an invisible barrier to the development of Antarctic subtidal macroalgal assemblages. Environ. Res. 2023, 233, 116438. [Google Scholar] [CrossRef]
- Ko, Y.W.; Choi, H.-G.; Lee, D.S.; Kim, J.H. 30 years revisit survey for long-term changes in the Antarctic subtidal algal assemblage. Sci. Rep. 2020, 10, 8481. [Google Scholar] [CrossRef]
- Edwards, M.S.; Connell, S.D. Competition, a major factor structuring seaweed communities. In Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization; Wiencke, C., Bischof, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–156. [Google Scholar]
- Epstein, G.; Hawkins, S.J.; Smale, D.A. Identifying niche and fitness dissimilarities in invaded marine macroalgal canopies within the context of contemporary coexistence theory. Sci. Rep. 2019, 9, 8816. [Google Scholar] [CrossRef]
- Malavenda, S.S.; Malavenda, S.V.; Chovgan, O. Interspecific relationships between Palmaria palmata and three Fucus species at the Murman Coast. ICES J. Mar. Sci. 2019, 76, i55–i61. [Google Scholar] [CrossRef]
- Piazzi, L.; Balata, D.; Cecchi, E.; Cinelli, F. Co-occurrence of Caulerpa taxifolia and C. racemosa in the Mediterranean Sea: Inter-specific interactions and influence on native macroalgal assemblages. Cryptogam. Algol. 2003, 24, 233–244. [Google Scholar]
- Nabivailo, Y.V.; Skriptsova, A.V.; Titlyanov, E.A. The interspecific relationships of seaweeds and their role in the formation of communities of Ahnfeltia tobuchiensis (Kanno et Matsubara, 1932) Makienko, 1970 (Rhodophyta). Russ. J. Mar. Biol. 2014, 40, 344–353. [Google Scholar] [CrossRef]
- Christie, H.; Jørgensen, N.M.; Norderhaug, K.M. Bushy or smooth, high or low; importance of habitat architecture and vertical position for distribution of fauna on kelp. J. Sea Res. 2007, 58, 198–208. [Google Scholar] [CrossRef]
- Al-Handal, A.Y.; Wulff, A. Marine epiphytic diatoms from the shallow sublittoral zone in Potter Cove, King George Island, Antarctica. Bot. Mar. 2008, 51, 411–435. [Google Scholar] [CrossRef]
- River, G.F.; Edmunds, P.J. Mechanisms of interaction between macroalgae and scleractinians on a coral reef in Jamaica. J. Exp. Mar. Biol. Ecol. 2001, 261, 159–172. [Google Scholar] [CrossRef]
- Vieira, C.; Payri, C.; De Clerck, O. A fresh look at macroalgal-coral interactions: Are macroalgae a threat to corals. Perspect. Phycol. 2016, 3, 129–140. [Google Scholar] [CrossRef]
- Bommarito, C.; Noè, S.; Díaz-Morales, D.M.; Lukić, I.; Hiebenthal, C.; Rilov, G.; Guy-Haim, T.; Wahl, M. Co-occurrence of native and invasive macroalgae might be facilitated under global warming. Sci. Total Environ. 2024, 912, 169087. [Google Scholar] [CrossRef]
- White, L.F.; Shurin, J.B. Diversity effects on invasion vary with life history stage in marine macroalgae. Oikos 2007, 116, 1193–1203. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Pellizzari, F.; Medeiros, A.S.; Yokoya, N.S. Diversity of Antarctic seaweeds. In Antarctic Seaweeds: Diversity, Adaptation and Ecosystem Services; Gómez, I., Huovinen, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 23–42. [Google Scholar]
- Zieliński, K. Bottom macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica). Pol. Polar Res. 1990, 11, 95–131. [Google Scholar]
- Amsler, C.D.; Rowley, R.J.; Laur, D.R.; Quetin, L.B.; Ross, R.M. Vertical distribution of Antarctic peninsular macroalgae: Cover, biomass and species composition. Phycologia 1995, 34, 424–430. [Google Scholar] [CrossRef]
- Chung, H.; Oh, Y.S.; Lee, I.K.; Kim, D.-Y. Macroalgal vegetation of Maxwell Bay in King George Island, Antarctica. Korean J. Phycol. 1994, 9, 47–58. [Google Scholar]
- Wiencke, C.; Gómez, I.; Dunton, K. Phenology and seasonal physiological performance of polar seaweeds. Bot. Mar. 2009, 52, 585–592. [Google Scholar] [CrossRef]
- Bischoff-Bäsmann, B.; Wiencke, C. Temperature requirements for growth and survival of Antarctic Rhodophyta 1. J. Phycol. 1996, 32, 525–535. [Google Scholar] [CrossRef]
- Gómez, I.; Wulff, A.; Roleda, M.Y.; Huovinen, P.; Karsten, U.; Quartino, M.L.; Dunton, K.; Wiencke, C. Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot. Mar. 2009, 52, 593–608. [Google Scholar] [CrossRef]
- Deregibus, D.; Quartino, M.L.; Campana, G.L.; Momo, F.; Wiencke, C.; Zacher, K. Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol. 2016, 39, 153–166. [Google Scholar] [CrossRef]
- Gómez, I.; Weykam, G.; Klöser, H.; Wiencke, C. Photosynthetic light requirements, metabolic carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar. Ecol. Prog. Ser. 1997, 148, 281–293. [Google Scholar] [CrossRef]
- Jacob, A.; Kirst, G.O.; Wiencke, C.; Lehmann, H. Physiological responses of the Antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. J. Plant Physiol. 1991, 139, 57–62. [Google Scholar] [CrossRef]
- Quartino, M.L.; Saravia, L.A.; Campana, G.L.; Deregibus, D.; Matula, C.V.; Boraso, A.L.; Momo, F.R. Production and biomass of seaweeds in newly ice-free areas: Implications for coastal processes in a changing Antarctic environment. In Antarctic Seaweeds: Diversity, Adaptation and Ecosystem Services; Gómez, I., Huovinen, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 155–171. [Google Scholar]
- Quartino, M.; Boraso de Zaixso, A. Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: Its production and flux to the ecosystem. Polar Biol. 2008, 31, 281–294. [Google Scholar] [CrossRef]
- Segovia-Rivera, V.; Valdivia, N. Independent effects of grazing and tide pool habitats on the early colonisation of an intertidal community on western Antarctic Peninsula. Rev. Chil. Hist. Nat. 2016, 89, 3. [Google Scholar] [CrossRef]
- Amsler, C.D.; Iken, K.; McClintock, J.B.; Amsler, M.O.; Peters, K.J.; Hubbard, J.M.; Furrow, F.B.; Baker, B.J. Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 2005, 294, 141–159. [Google Scholar] [CrossRef]
- Campana, G.L.; Zacher, K.; Deregibus, D.; Momo, F.R.; Wiencke, C.; Quartino, M.L. Succession of Antarctic benthic algae (Potter Cove, South Shetland Islands): Structural patterns and glacial impact over a four-year period. Polar Biol. 2018, 41, 377–396. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G. AlgaeBase. World-Wide Electronic Publication; University of Galway: Galway, Ireland, 2024. [Google Scholar]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Hughey, J.R.; Leister, G.L.; Gabrielson, P.W.; Hommersand, M.H. Sarcopeltis gen. nov.(Gigartinaceae, Rhodophyta), with S. skottsbergii comb. nov. from southern South America and S. antarctica sp. nov. from the Antarctic Peninsula. Phytotaxa 2020, 468, 75–88. [Google Scholar] [CrossRef]
- Tonicelli, G.A.; Croce, M.E.; Díaz-Tapia, P.; Fredericq, S.; Freshwater, D.W.; Gauna, M.C.; Parodi, E.R.; Verbruggen, H.; Hommersand, M.H. Meridionella gen. nov., a New Genus of Cystocloniaceae (Gigartinales, Rhodophyta) from the Southern Hemisphere, Including M. obtusangula comb. nov. and M. antarctica sp. nov. J. Phycol. 2021, 57, 797–816. [Google Scholar] [CrossRef]
- Becker, S.; Quartino, M.L.; Campana, G.L.; Bucolo, P.; Wiencke, C.; Bischof, K. The biology of an Antarctic rhodophyte, Palmaria decipiens: Recent advances. Antarct. Sci. 2011, 23, 419–430. [Google Scholar] [CrossRef]
- Campana, G.L.; Zacher, K.; Momo, F.R.; Deregibus, D.; Debandi, J.I.; Ferreyra, G.A.; Ferrario, M.E.; Wiencke, C.; Quartino, M.L. Successional processes in Antarctic benthic algae. In Antarctic Seaweeds: Diversity, Adaptation and Ecosystem Services; Gómez, I., Huovinen, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 241–264. [Google Scholar]
- Klöser, H.; Ferreyra, G.; Schloss, I.; Mercuri, G.; Laturnus, F.; Curtosi, A. Seasonal variation of algal growth conditions in sheltered Antarctic bays: The example of Potter Cove (King George Island, South Shetlands). J. Mar. Syst. 1993, 4, 289–301. [Google Scholar] [CrossRef]
- Küpper, F.C.; Amsler, C.D.; Morley, S.; de Reviers, B.; Reichardt, A.; Peck, L.S.; Peters, A.F. Juvenile morphology of the large Antarctic canopy-forming brown alga, Desmarestia menziesii J. Agardh. Polar Biol. 2019, 42, 2097–2103. [Google Scholar] [CrossRef]
- DeLaca, T.; Lipps, J. Shallow-water marine associations, Antarctic Peninsula. Antarct. J. U.S. 1976, 11, 12–20. [Google Scholar]
- Breda, V.A.; Foster, M.S. Composition, abundance, and phenology of foliose red algae associated with two central California kelp forests. J. Exp. Mar. Biol. Ecol. 1985, 94, 115–130. [Google Scholar] [CrossRef]
- Carpenter, R.C. Competition among marine macroalgae: A physiological perspective. J. Phycol. 1990, 26, 6–12. [Google Scholar] [CrossRef]
- Goecke, F.; Labes, A.; Wiese, J.; Imhoff, J.F. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 2010, 409, 267–299. [Google Scholar] [CrossRef]
- Florez, J.Z.; Camus, C.; Hengst, M.B.; Buschmann, A.H. A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Front. Microbiol. 2017, 8, 2561. [Google Scholar] [CrossRef] [PubMed]
- Ørberg, S.B.; Krause-Jensen, D.; Mouritsen, K.N.; Olesen, B.; Marbà, N.; Larsen, M.H.; Blicher, M.E.; Sejr, M.K. Canopy-forming macroalgae facilitate recolonization of sub-Arctic intertidal fauna and reduce temperature extremes. Front. Mar. Sci. 2018, 5, 332. [Google Scholar] [CrossRef]
- Kim, J.H. Patterns of interactions among neighbor species in a high intertidal algal community. Algae 2002, 17, 41–51. [Google Scholar] [CrossRef]
- Kim, B.J.; Lee, H.J.; Yum, S.; Lee, H.A.; Bhang, Y.J.; Park, S.R.; Kim, H.J.; Kim, J.H. A short-term response of macroalgae to potential competitor removal in a mid-intertidal habitat in Korea. In Asian Pacific Phycology in the 21st Century: Prospects and Challenges: Proceeding of the Second Asian Pacific Phycological Forum, Hong Kong, China, 21–25 June 1999; Springer: Dordrecht, The Netherlands, 2004; pp. 57–62. [Google Scholar]
- Stokstad, E. On the Origin of Ecological Structure. Science 2009, 326, 33–35. [Google Scholar] [CrossRef]
- Diamond, J.M. Assembly of species communities. In Ecology and Evolution of Communities; Cody, M.L., Diamond, J.M., Eds.; Harvard University Press: Cambridge, MA, USA, 1975; pp. 342–444. [Google Scholar]
- Blanchet, F.G.; Cazelles, K.; Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 2020, 23, 1050–1063. [Google Scholar] [CrossRef]
- Weiher, E.; Keddy, P. Ecological Assembly Rules: Perspectives, Advances, Retreats; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Connor, E.F.; Simberloff, D. The assembly of species communities: Chance or competition? Ecology 1979, 60, 1132–1140. [Google Scholar] [CrossRef]
Group | Species | Relative Frequency | Coverage (%) | Biomass (Wet wt. g m−2) | ||
---|---|---|---|---|---|---|
Mean | S.E. | Mean | S.E. | |||
Red | Palmaria decipiens | 50.62% | 13.70 | 1.31 | 327.59 | 83.64 |
Red | Crustose coralline algae | 32.72% | 3.11 | 0.44 | - | - |
Red | Plocamium sp. | 32.72% | 7.46 | 1.00 | 146.69 | 51.51 |
Brown | Himantothallus grandifolius | 27.47% | 11.06 | 1.33 | 612.22 | 179.75 |
Brown | Desmarestia anceps | 22.84% | 12.77 | 1.67 | 1230.32 | 508.66 |
Red | Picconiella plumosa | 14.51% | 2.12 | 0.45 | 11.10 | 5.62 |
Brown | Desmarestia menziesii | 13.89% | 3.44 | 0.85 | 0.93 | 0.85 |
Red | Iridaea sp. | 8.95% | 0.52 | 0.17 | 55.44 | 28.15 |
Red | Sarcopeltis antarctica | 8.64% | 1.75 | 0.49 | 55.33 | 25.73 |
Green | Monostroma hariotii | 7.72% | 0.30 | 0.11 | 0.59 | 0.32 |
Red | Trematocarpus antarcticus | 7.72% | 0.57 | 0.18 | 25.28 | 20.81 |
Red | Pantoneura plocamioides | 5.86% | 0.44 | 0.12 | 13.89 | 6.84 |
Brown | Desmarestia antarctica | 3.70% | 0.80 | 0.31 | 14.46 | 9.94 |
Red | Phycodrys antarctica | 2.78% | 0.11 | 0.04 | 2.91 | 1.74 |
Green | Ulva hookeriana | 2.78% | 0.03 | 0.01 | 0.12 | 0.12 |
Brown | Phaeurus antarcticus | 2.16% | 0.03 | 0.02 | 1.63 | 1.32 |
Brown | Ascoseira mirabilis | 1.85% | 0.48 | 0.25 | - | - |
Brown | Cystosphaera jacquinotii | 1.54% | 0.32 | 0.19 | - | - |
Red | Myriogramme manginii | 1.54% | 0.07 | 0.04 | 0.14 | 0.14 |
Red | Meridionella antarctica * | 1.23% | 0.27 | 0.14 | - | - |
Red | Ahnfeltia plicata | 1.23% | 0.07 | 0.04 | 1.16 | 1.13 |
Brown | Halopteris obovata | 1.23% | 0.08 | 0.04 | 1.39 | 1.17 |
Brown | Petroderma maculiforme | 0.93% | 0.17 | 0.13 | - | - |
Red | Ballia callitricha | 0.62% | 0.10 | 0.07 | - | - |
Red | Delisea pulchra | 0.62% | 0.01 | 0.01 | - | - |
Red | Georgiella confluens | 0.62% | 0.04 | 0.03 | 3.27 | 2.74 |
Red | Notophycus fimbriatus | 0.62% | 0.05 | 0.05 | - | - |
Brown | Adenocystis utricularis | 0.31% | 0.00 | 0.00 | 0.02 | 0.02 |
Brown | Desmarestia spp. ** | 0.31% | 0.01 | 0.01 | 0.11 | 0.08 |
Red | Myriogramme smithii | 0.31% | 0.01 | 0.01 | 2.42 | 2.42 |
Red | Neuroglossum ligulatum | 0.31% | 0.00 | 0.00 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, Y.W.; Yang, K.M.; Choi, H.-G. Substrate Preferences and Interspecific Affinities of Antarctic Macroalgae: Insights from Maxwell Bay, King George Island. Diversity 2024, 16, 628. https://doi.org/10.3390/d16100628
Ko YW, Yang KM, Choi H-G. Substrate Preferences and Interspecific Affinities of Antarctic Macroalgae: Insights from Maxwell Bay, King George Island. Diversity. 2024; 16(10):628. https://doi.org/10.3390/d16100628
Chicago/Turabian StyleKo, Young Wook, Kwon Mo Yang, and Han-Gu Choi. 2024. "Substrate Preferences and Interspecific Affinities of Antarctic Macroalgae: Insights from Maxwell Bay, King George Island" Diversity 16, no. 10: 628. https://doi.org/10.3390/d16100628
APA StyleKo, Y. W., Yang, K. M., & Choi, H. -G. (2024). Substrate Preferences and Interspecific Affinities of Antarctic Macroalgae: Insights from Maxwell Bay, King George Island. Diversity, 16(10), 628. https://doi.org/10.3390/d16100628