The Taxonomic and Functional Diversity of Leaf-Litter Dwelling Ants in the Tropical Dry Forest of the Colombian Caribbean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- TDF fragments in Atlántico (hereafter N1): (a) Luriza Integrated Management Regional District (10.75198 N, −75.03075). This is an area declared protected for preservation, conservation, and restoration of dry forest, with an extension of 837 ha. (b) “Palmar del Titi” Integrated Management Regional District (10.65405 N, −75.18625 W). It is a remnant of dry forest with an area of 2622 ha, with a good state of conservation, gallery forests, and secondary vegetation.
- TDF fragments in Bolívar (hereafter N2): (a) Los Colorados Flora and Fauna Sanctuary (9.925380 N, −75.18625). It is an area declared protected for conservation and considered the best-preserved fragment of tropical dry forest in the Colombian Caribbean, with an area of 1000 ha. (b) Brasilar tropical dry forest reserve (9.908608 N, −75.187768). It is a permanent plot of dry forest, which has gallery forests and secondary vegetation.
- TDF fragments in Sucre (hereafter N3): (a) Caracolí Civil Society Nature Reserve (9.59892 N, −75.32990). It is a tropical dry forest reserve with an area of 132 ha. (b) Serranía de Coraza and Montes de María Protective Reserve (9.52169, −75.39577). This reserve presents remnants of dry forest with an area of 6730 ha.
2.2. Ants Sampling
2.3. Data Analysis
2.3.1. Functional Traits
2.3.2. Functional Diversity
3. Results
3.1. Composition and Completeness of Sampling
3.2. Alpha Diversity
3.3. Spatial and Temporal Variation and Beta Diversity in the Ant Community
3.4. Functional Groups
3.5. Functional Traits
Functional Diversity
4. Discussion
4.1. Sampling Composition and Coverage
4.2. Alpha Diversity
4.3. Spatial and Temporal Variation and Beta Diversity in the Ant Community
4.4. Functional Groups
4.5. Functional Traits
Functional Diversity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Taxa | Functional Groups | N1 | N2 | N3 |
---|---|---|---|---|
Amblyoponinae | ||||
Prionopelta antillana (Forel, 1909) | SSP | 1.25 * | ||
Dolichoderinae | ||||
Azteca sp. 1 | 1.25 | |||
Dolichoderus bispinosus (Olivier, 1792) | AO | 2.5 | ||
Dolichoderus sp. 2 | AO | 1.25 | ||
Tapinoma ramulorum Emery, 1896 | SO | 1.25 * | 6.25 * | 3.75 |
Dorylinae | ||||
Labidus coecus (Latreille, 1802) | AA | 6.25 | 1.25 | 1.25 * |
Labidus praedator (Smith, 1858) | AA | 2.5 * | 2.5 | 5 * |
Nomamyrmex esenbeckii | AA | 1.25 * | ||
Syscia sp. 1 | MPN | 3.75 * | 2.5 * | |
Ectatomminae | ||||
Alfaria minuta Emery, 1896 | SLP | 5 * | ||
Ectatomma ruidum (Roger, 1860) | LEP | 13.75 | 2.5 | 1.25 |
Ectatomma tuberculatum (Olivier, 1792) | LAP | 1.25 | 1.25 * | |
Gnamptogenys boliviensis Lattke, 1995 | SLP | 2.5 ** | 3.75 ** | |
Gnamptogenys sp. 2 | SLP | 1.25 | ||
Holcoponera strigata (Norton, 1868) | SLP | 8.75 * | ||
Forminicinae | ||||
Acropyga fuhrmanni (Forel, 1914) | EHD | 3.75 * | 5 * | |
Acropyga smithii Forel, 1893 | EHD | 1.25 * | 1.25 * | |
Brachymyrmex aphidicola Forel, 1909 | ASO | 5 * | 1.25 * | |
Brachymyrmex minutus Forel, 1893 | ASO | 7.5 * | ||
Camponotus sp. 1 | ASO | 2.5 | 1.25 | |
Camponotus sp. 3 | ASO | 5 | 5 | |
Camponotus sp. 4 | ASO | 2.5 | 2.5 | |
Camponotus sp. 5 | ASO | 1.25 | 1.25 | |
Camponotus sp. 6 | ASO | 1.25 | ||
Camponotus sp. 7 | ASO | 1.25 | ||
Camponotus striatus (Smith, 1862) | ASO | 2.5 * | ||
Nylanderia guatemalensis (Forel, 1885) | MLO | 30 * | 40 * | 51.25 * |
Myrmicinae | ||||
Acromyrmex santschii (Forel, 1912) | LCA | 10 | 1.25 | |
Adelomyrmex myops (Wheeler, 1910) | SSP | 2.5 | 8.75 * | |
Apterostigma dentigerum Wheeler, 1925 | FLA | 1.25 * | ||
Apterostigma pariense Lattke, 1997 | FLA | 1.25 ** | ||
Apterostigma pilosum Mayr, 1865 | FLA | 3.75 * | 16.25 * | 6.25 * |
Atta colombica Guérin-Méneville, 1844 | LCA | 3.75 | ||
Carebara audita Fernández, 2004 | SO | 2.5 * | ||
Carebara brevipilosa Fernández, 2004 | SO | 10 | 12.5 * | |
Carebara globularia Fernández, 2004 | SO | 11.25 * | 3.75 * | 23.75 * |
Carebara striata (Xu, 2003) | SO | 8.75 * | 11.25 * | |
Carebara urichi (Wheeler, 1922) | SO | 2.5 * | ||
Cephalotes atratus (Linnaeus, 1758) | AO | 1.25 | ||
Cephalotes columbicus (Forel, 1912) | AO | 1.25 * | ||
Cephalotes complanatus (Guérin-Méneville, 1844) | AO | 2.5 * | ||
Cephalotes porrasi (Wheeler, 1942) | AO | 1.25 * | ||
Cephalotes varians (Smith, 1876) | AO | 1.25 * | ||
Crematogaster brasiliensis Mayr, 1878 | AO | 6.25 * | 5 * | 1.25 * |
Crematogaster carinata Mayr, 1862 | AO | 1.25 * | ||
Crematogaster erecta Mayr, 1866 | AO | 2.5 * | 2.5 * | |
Crematogaster flavosensitiva Longino, 2003 | AO | 2.5 * | 31.25 * | |
Crematogaster limata Smith, 1858 | AO | 20 * | 23.75 * | 11.25 * |
Crematogaster nigropilosa Mayr, 1870 | AO | 2.5 * | 1.25 * | 28.75 * |
Crematogaster obscurata Emery, 1895 | AO | 3.75 * | 3.75 * | |
Crematogaster stollii Forel, 1885 | AO | 1.25 * | ||
Cyphomyrmex costatus Mann, 1922 | FYA | 3.75 * | 7.5 * | 8.75 * |
Cyphomyrmex minutus Mayr, 1862 | FYA | 35 * | 41.25 * | 47.5 * |
Cyphomyrmex rimosus (Spinola, 1851) | FYA | 16.25 * | 5 | 2.5 * |
Cyphomyrmex sp. 4 | FYA | 1.25 | ||
Eurhopalothrix pilulifera Brown and Kempf, 1960 | DP | 2.5 * | ||
Hylomyrma columbica (Forel, 1912) | MLO | 18.75 * | ||
Lachnomyrmex scrobiculatus Wheeler, 1910 | MLO | 2.5 * | ||
Megalomyrmex drifti Kempf, 1961 | MLO | 18.75 | 2.5 * | |
Megalomyrmex incisus Smith, 1947 | MLO | 2.5 | 5 * | |
Megalomyrmex longinoi Boudinot et al., 2013 | MLO | 2.5 ** | 1.25 ** | |
Megalomyrmex silvestrii Wheeler, 1909 | MLO | 10 * | 12.5 | 1.25 * |
Monomorium floricola (Jerdon, 1851) | AO | 2.5 * | 6.25 * | 30 * |
Mycetomoellerius sp. 1 | FLA | 1.25 | ||
Mycocepurus curvispinosus Mackay, 1998 | FLA | 10 * | ||
Myrmicocrypta sp. 2 | FLA | 1.25 * | ||
Myrmicocrypta urichi Weber, 1937 | FLA | 7.5 * | 5 * | |
Nesomyrmex sp. 1 | AO | 1.25 * | ||
Octostruma amrishi (Makhan, 2007) | DPSM | 50 * | 73.75 * | 76.25 * |
Octostruma iheringi (Emery, 1888) | DPSM | 8.75 * | ||
Paratrachymyrmex bugnioni (Forel, 1912) | FGHA | 3.75 | 2.5 * | 8.75 * |
Paratrachymyrmex cornetzi (Forel, 1912) | FGHA | 2.5 * | 1.25 * | |
Paratrachymyrmex irmgardae (Forel, 1912) | FGHA | 11.25 * | ||
Pheidole biconstricta Mayr, 1870 | SO | 2.5 * | 2.5 * | |
Pheidole fimbriata Roger, 1863 | SO | 1.25 * | 1.25 * | |
Pheidole flavens Roger, 1863 | SO | 56.25 * | 55 * | 40 * |
Pheidole mendicula Wheeler, 1925 | SO | 38.75 * | 48.75 * | 25 * |
Pheidole pugnax Dalla Torre, 1892 | SO | 48.75 * | 45 * | 26.25 * |
Pheidole subarmata Mayr, 1884 | SO | 7.5 * | 12.5 * | 23.75 * |
Pheidole susannae Forel, 1886 | SO | 2.5 * | 2.5 * | 1.25 * |
Pheidole synarmata Wilson, 2003 | SO | 2.5 * | 21.25 * | 10 * |
Pheidole transversostriata Mayr, 1887 | SO | 2.5 * | 1.25 * | 1.25 * |
Pheidole zeteki Smith, 1947 | SO | 16.25 * | 5 * | 37.5 * |
Pheidole sp. 1 | SO | 3.75 | 26.25 | 12.5 * |
Pheidole sp. 2 | SO | 12.5 | 8.75 * | |
Pheidole sp. 4 | SO | 3.75 | 1.25 | 12.5 * |
Pheidole sp. 5 | SO | 5 | 2.5 * | |
Pheidole sp. 9 | SO | 2.5 | 2.5 * | |
Pheidole sp. 12 | SO | 5 | 2.5 * | |
Pheidole sp. 13 | SO | 16.25 | 20 * | |
Pheidole sp. 17 | SO | 1.25 | 1.25 * | |
Pheidole sp. 18 | SO | 20 * | ||
Pogonomyrmex mayri Forel, 1899 | SO | 10 | 1.25 | 6.25 |
Rhopalothrix isthmica (Weber, 1941) | DP | 1.25 * | ||
Rogeria belti Mann, 1922 | SO | 1.25 * | 12.5 * | 12.5 * |
Rogeria ciliosa Kugler, 1994 | SO | 1.25 ** | ||
Rogeria curvipubens Emery, 1894 | SO | 5 * | 11.25 * | 15 * |
Rogeria foreli Emery, 1894 | SO | 36.25 * | 28.75 * | 2.5 * |
Sericomyrmex amabilis Wheeler, 1925 | FGHA | 5 * | 5 * | |
Solenopsis azteca Forel, 1893 | SO | 82.5 * | 78.75 * | 87.5 * |
Solenopsis geminata (Fabricius, 1804) | SO | 50 | 18.75 | 21.25 * |
Solenopsis picea Emery, 1896 | SO | 20 * | 26.25 * | 41.25 * |
Stegomyrmex manni Smith, 1946 | SSP | 1.25 * | 1.25 * | |
Strumigenys biolleyi Forel, 1908 | DP | 1.25 * | ||
Strumigenys cordovensis Mayr, 1887 | DP | 2.5 * | 7.5 * | |
Strumigenys deltisquama Brown, 1957 | DP | 41.25 * | 21.25 | 17.5 |
Strumigenys denticulata Mayr, 1887 | DP | 1.25 * | 40 | |
Strumigenys dyseides Bolton, 2000 | DP | 1.25 * | 2.5 * | |
Strumigenys eggersi Emery, 1890 | DP | 55 * | 56.25 | 37.5 * |
Strumigenys elongata Roger, 1863 | DP | 35 * | 43.75 | 40 |
Strumigenys fridericimuelleri Forel, 1886 | DP | 22.5 * | 7.5 * | 33.75 * |
Strumigenys lanuginosa Wheeler, 1905 | DP | 5 * | 11.25 * | 3.75 * |
Strumigenys marginiventris Santschi, 1931 | DP | 15 * | 1.25 | 10 |
Strumigenys subedentata Mayr, 1887 | DP | 2.5 | 6.25 * | |
Strumigenys zeteki (Brown, 1959) | DP | 2.5 * | 40 * | 3.75 * |
Trichomyrmex destructor (Jerdon, 1851) | ASO | 3.75 | 2.5 | 8.75 * |
Wasmannia auropunctata (Roger, 1863) | SO | 28.75 * | 28.75 | 38.75 * |
Ponerinae | ||||
Anochetus diegensis Forel, 1912 | MLO | 21.25 | 21.25 * | |
Anochetus inermis André, 1889 | MLO | 11.25 * | 1.25 | |
Hypoponera opacior (Forel, 1893) | SLP | 28.75 * | 56.25 * | 33.75 * |
Hypoponera trigona (Mayr, 1887) | SLP | 3.75 * | 25 * | 26.25 * |
Leptogenys ritae Forel, 1899 | SSI | 6.25 * | 3.75 | 1.25 * |
Mayaponera constricta (Mayr, 1884) | MLO | 6.25 | 22.5 * | |
Mayaponera arhuaca (Forel, 1901) | MLO | 1.25 * | 6.25 * | 18.75 * |
Neoponera apicalis (Latreille, 1802) | LEP | 1.25 | 3.75 * | |
Neoponera carinulata (Roger, 1861) | LAP | 2.5 * | 1.25 * | |
Neoponera verenae (Forel, 1922) | LEP | 1.25 | ||
Odontomachus bauri Emery, 1892 | LEP | 2.5 | 5 | 10 |
Odontomachus brunneus (Patton, 1894) | LEP | 2.5 | 2.5 * | |
Odontomachus laticeps Roger, 1861 | LEP | 2.5 * | 3.75 * | |
Odontomachus opaciventris Forel, 1899 | LEP | 15 * | 26.25 * | 6.25 * |
Pachycondyla harpax (Fabricius, 1804) | LEP | 26.25 | 36.25 | 18.75 |
Pachycondyla impressa (Roger, 1861) | LEP | 2.5 | 3.75 | 5 * |
Rasopone pluviselva Longino & Branstetter, 2020 | SLP | 1.25 ** | ||
Thaumatomyrmex atrox Weber, 1939 | SSM | 2.5 | 1.25 | |
Thaumatomyrmex zeteki Smith, 1944 | SSM | 6.25 * | 18.75 * | |
Proceratiinae | ||||
Discothyrea humilis Weber, 1939 | SSP | 3.75 * | 1.25 * | |
Discothyrea neotropica Bruch, 1919 | SSP | 1.25 * | 13.75 | |
Discothyrea sp. 4 | SSP | 1.25 | ||
Discothyrea testacea Roger, 1863 | SSP | 1.25 * | 12.5 * | |
Probolomyrmex boliviensis Mann, 1923 | SSP | 2.5 * | 1.25 * | |
Proceratium catio de Andrade, 2003 | SSP | 1.25 * | ||
Pseudomyrmecinae | ||||
Pseudomyrmex boopis (Roger, 1863) | LAP | 1.25 | 2.5 | |
Pseudomyrmex mordax (Warming, 1894) | LAP | 1.25 | ||
Pseudomyrmex simplex (Smith, 1877) | LAP | 1.25 * | 1.25 | 1.25 |
Pseudomyrmex sp. 4 | LAP | 1.25 |
References
- Pizano, C.; Cabrera, M.; García, H. Bosque seco tropical en Colombia; generalidades y contexto. In El Bosque Seco Tropical en Colombia; Pizano, C., García, H., Eds.; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH): Bogotá, Colombia, 2014; pp. 36–47. [Google Scholar]
- Ulloa-Delgado, G. Aspectos Ecológicos del Bosque Seco Tropical en el Caribe Colombiano; Tropenbos Internacional Colombia y Fondo Patrimonio Natural: Bogotá, Colombia, 2016; pp. 5–56. [Google Scholar]
- Janzen, D.H. Management of Habitat Fragments in a Tropical Dry Forest: Growth. Ann. Mo. Bot. Gard. 1988, 75, 105–116. [Google Scholar] [CrossRef]
- Zuluaga, L. Evaluación Estructural del Ecosistema Bosque Seco Tropical en el Municipio de El Carmen de Bolívar (Bolívar) y Determinación de sus Beneficios Ecosistémicos. Master’s Thesis, Universidad de Manizales, Manizales, Colombia, 23 January 2016. Available online: https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/2576 (accessed on 20 March 2024).
- Portillo-Quintero, C.A.; Sánchez-Azofeifa, G.A. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 2010, 143, 144–155. [Google Scholar] [CrossRef]
- García, H.; González-M, R. Bosque Seco Colombia: Biodiversidad y Gestión; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2019; p. 8. [Google Scholar]
- Franco-Maass, S.; Regil-Gracía, H.H.; Ordóñez-Díaz, J.A. Dinámica de perturbación-recuperación de las zonas forestales en el Parque Nacional Nevado de Toluca. Madera y Bosques 2006, 12, 17–28. [Google Scholar] [CrossRef]
- Martínez, N.J.; Cañas, L.M.; Rangel, J.L.; Barraza, J.; Montes, J.; Blanco, O.R. Fich. Bol. Mus. Entomol. U. Valle 2010, 11, 21–30. [Google Scholar]
- Agosti, D.; Alonso, L.E. The ALL Protocol: A standard protocol for the collection of ground-dwelling ants. In Ants: Standard Methods for Measuring and Monitoring Biodiversity; Agosti, D., Majer, J.D., Alonso, L.E., Schultz, T.R., Eds.; Smithsonian Institution Press: Washington, DC, USA, 2000; pp. 204–206. [Google Scholar]
- Folgarait, P.J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biod. Cons. 1998, 7, 1221–1244. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.O. Ecology and Behavior of the primitive cryptobiotic ant Prionopelta amabilis (Hymenoptera: Formicidae). Insectes Sociaux 1986, 33, 45–58. [Google Scholar] [CrossRef]
- Andersen, A.N. Sampling communities of ground-foraging ants: Pitfall catches compared with quadrat counts in an Australian tropical savanna. Aust. J. Ecol. 1991, 16, 273–279. [Google Scholar] [CrossRef]
- Underwood, E.C.; Fisher, B.L. The role of ants in conservation monitoring: If, when, and how. Biol. Conserv. 2006, 132, 166–182. [Google Scholar] [CrossRef]
- Kaspari, M.; Majer, J.D. Using ants to monitor environmental change. In Ants: Standard Methods for Measuring Y Monitoring Biodiversity; Agosti, J., Majer, J.D., Alonso, L., Schultz, T.R., Eds.; Smithsonian Institution: Washington, DC, USA, 2000; pp. 89–98. [Google Scholar]
- Schultz, T.R.; McGlynn, T.P. The interactions of ants with others organisms. In Ants: Standard Methods for Measuring y Monitoring Biodiversity; Agosti, J., Majer, J.D., Alonso, L., Schultz, T.R., Eds.; Smithsonian Institution: Washington, DC, USA, 2000; pp. 35–44. [Google Scholar]
- Moreno, C. La Biodiversidad en un Mundo Cambiante: Fundamentos Teóricos y Metodológicos para su Estudio; Universidad Autónoma del Estado de Hidalgo y Libermex: Ciudad de México, México, 2019. [Google Scholar]
- Pey, B.; Nahmani, J.; Auclerc, A.; Capowiez, Y.; Cluzeau, D.; Cortet, J.; Decaëns, J.; Deharveng, L.; Dubs, F.; Joimel, S.; et al. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl. Ecol. 2014, 15, 194–206. [Google Scholar] [CrossRef]
- Wong, M.K.L.; Guénard, B.; Lewis, O.T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 2019, 94, 999–1022. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Carscadden, K.; Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 2011, 48, 1079–1087. [Google Scholar] [CrossRef]
- Díaz, S.; Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Lohbeck, M.; Poorter, L.; Paz, H.; Pla, L.; van Breugel, M.; Martínez-Ramos, M.; Bongers, F. Functional diversity changes during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 89–96. [Google Scholar] [CrossRef]
- Yates, M.L.; Andrew, N.R.; Binns, M.; Gibb, H. Morphological traits: Predictable responses to macrohabitats across a 300 km scale. PeerJ 2014, 2, 1–20. [Google Scholar] [CrossRef]
- Rocha, F.; Bogar, A.; Ibañez Weemaels, A.; Jiaxin, H.; Liang, M.; Park, C.; Lee, R.H.; Khan, S.A.; Han, S.; NG, Y.L.; et al. Two sides of the same coin? Ants are ecosystem engineers and providers of ecosystem services. Myrmecol. News. 2024, 34, 129–157. [Google Scholar]
- Elizalde, L.; Arbetman, M.; Arnan, X.; Eggleton, P.; Leal, I.R.; Lescano, M.N.; Saez, A.; Werenkraut, V.; Pirk, G.I. The ecosystem services provided by social insects: Traits, management tools and knowledge gaps. Biol. Rev. 2020, 95, 1418–1441. [Google Scholar] [CrossRef] [PubMed]
- Bihn, J.H.; Gebauer, G.; Brandl, R. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 2010, 91, 782–792. [Google Scholar] [CrossRef]
- Silva, R.; Brandão, C. Morphological patterns and community organization in leaf-litter ant assemblages. Ecol. Monogr. 2010, 80, 107–124. [Google Scholar] [CrossRef]
- Brandão, C.R.; Silva, R.R.; Delabie, J.H. Neotropical Ants (Hymenoptera) Functional Groups: Nutritional and Applied Implications. In Insect Bioecology and Nutrition for Integrated Pest Management; Panizzi, A., Parra, J.R., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 231–254. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Westoby, M.; Wright, I.J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 2006, 21, 261–268. [Google Scholar] [CrossRef]
- Drager, K.I.; Rivera, M.D.; Gibson, J.C.; Ruzi, S.A.; Hanisch, P.E.; Achury, R.; Suarez, A.V. Testing the predictive value of functional traits in diverse ant communities. Ecol. Evol. 2023, 13, e10000. [Google Scholar] [CrossRef] [PubMed]
- Wiescher, P.T.; Pearce-Duvet, J.M.; Feener, D.H. Assembling an ant community: Species functional traits reflect environmental filtering. Oecologia 2012, 169, 1063–1074. [Google Scholar] [CrossRef]
- Weiser, M.D.; Kaspari, M. Ecological morphospace of New World ants. Ecol. Entomol. 2006, 31, 131–142. [Google Scholar] [CrossRef]
- Kaspari, M.; Weiser, M.D. The size–grain hypothesis and interspecific scaling in ants. Funct. Ecol. 1999, 13, 530–538. [Google Scholar] [CrossRef]
- Fowler, H.G.; Forti, L.C.; Brandão, C.R.; Delabie, J.H.; Vasconcelos, H.L. Ecología nutricional de formigas. In Ecologia Nutricional Insetos; Oanizzi, A.R., Parra, J.R., Eds.; Manole: Brasil, Brazil, 1991; pp. 131–223. [Google Scholar]
- Marques, T.; Espírito-Santo, M.M.; Schoereder, J.H. Ant Assemblage Structure in a Secondary Tropical Dry Forest: The Role of Ecological Succession and Seasonality. Sociobiology 2017, 64, 261–275. [Google Scholar] [CrossRef]
- Silva, L.; Souza, M.; Solar, R.R.C.; Neves, F.S. Ant diversity in Brazilian tropical dry forests across multiple vegetation domains. Environ. Res. Lett. 2017, 12, 035002. [Google Scholar] [CrossRef]
- de Menezes, A.S.; Schmidt, F.A. Mechanisms of species coexistence and functional diversity of ant assemblages in forest and pasture habitats in southwestern Brazilian Amazon. Sociobiology 2020, 67, 33–40. [Google Scholar] [CrossRef]
- Armbrecht, I.; Chacón, P. Rareza y Diversidad de Hormigas en Fragmentos de Bosque Seco Colombianos y sus Matrices. Biotropica 1999, 31, 646–653. [Google Scholar] [CrossRef]
- Armbrecht, I.; Tischer, I.; Chacón, P. Nested subsets and partition patterns in ant assemblages (Hymenoptera, Formicidae) of Colombian dry forest fragments. Pan-Pac. Entomol. 2001, 77, 196–209. [Google Scholar]
- Arcila-Cardona, A.; Osorio, A.M.; Bermúdez, C.; Chacón de Ulloa, P. Diversidad de hormigas cazadoras asociadas a los elementos del paisaje del bosque seco. In Sistemática, Biogeografía y Conservación de las Hormigas Cazadoras de Colombia; Jiménez, E., Fernández, F., Arias, T., Lozano-Zambrano, F., Eds.; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2008; pp. 531–552. [Google Scholar]
- Chacón de Ulloa, P.; Osorio-García, A.M.; Achury, R.; Bermúdez-Rivas, C. Hormigas (Hymenoptera: Formicidae) del Bosque seco Tropical (Bs-T) de la cuenca alta del río Cauca, Colombia. Biota Colomb. 2012, 13, 165–181. [Google Scholar]
- Gallego-Ropero, M.C.; Salguero, B. Ensamblaje de hormigas del bosque seco tropical, jardín botánico de Cali. Colomb. For. 2015, 18, 139–150. [Google Scholar] [CrossRef]
- Dix, O.; Martínez, J.; Fernández, C. Contribución al conocimiento de la mirmecofauna en el municipio de San Antero, cordoba, Colombia. Rev. Colomb. Entomol. 2005, 31, 97–103. [Google Scholar] [CrossRef]
- Domínguez, Y.; Fontalvo, L.; Guitérrez, L.C. Composición y distribución espacio-temporal de las hormigas cazadoras (Formicidae: Grupos Poneroide y Ectatomminoide) en tres fragmentos de bosque seco tropical del departamento del Atlántico, Colombia. In Sistemática, Biogeografía y Conservación de las Hormigas Cazadoras de Colombia; Jiménez, E., Fernández, F., Arias, T.M., Lozano-Zambrano, F., Eds.; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2007; pp. 497–512. [Google Scholar]
- Fontalvo-Rodríguez, L.; Solís-Medina, C. Ensamblaje de hormigas (Hymenoptera: Formicidae) en fragmentos de bosque seco en el complejo carbonífero el Cerrejón (La Guajira, Colombia). Rev. Introp. 2009, 4, 5–15. [Google Scholar]
- Simanca-Fontalvo, R.; Fajardo-Herrera, R.J. Fauna de hormigas (Hymenoptera: Formicidae) en dos remanentes de Bosque Seco Tropical (Bs-T) en Corrales de San Luis, Atlantico, Colombia. Bol. Mus. Entomol. U. Valle 2013, 14, 1. [Google Scholar]
- Domínguez-Haydar, Y.; Armbrecht, I. Response of Ants and Their Seed Removal in Rehabilitation Areas and Forests at El Cerrejón Coal Mine in Colombia. Restor. Ecol. 2011, 19, 178–184. [Google Scholar] [CrossRef]
- Ramos Ortega, L.; Guerrero, R. Spatial Turnover and Functional Redundancy in the Ants of Urban Fragments of Tropical Dry Forest. Diversity 2023, 15, 880. [Google Scholar] [CrossRef]
- Aguilera-Díaz, M.M. Montes de María: Una subregión de economía campesina y empresarial. Documentos de Trabajo Sobre Economía Regional y Urbana 2013, 195. [Google Scholar]
- Hernández, C.; Hurtado, G.; Ortíz, Q.; Walscbulger, C. Unidades biogeográficas de Colombia. In La Diversidad Biológica de Iberoamérica; Halffter, G., Ed.; Acta Zoológica Mexicana: Ciudad de México, Mexico, 1992; Volume 1, pp. 100–115. [Google Scholar]
- Guerrero, R.; Delsinne, T.; Dekoninck, W. Métodos de recolección y curadurías. In Hormigas de Colombia; Fernández, F., Guerrero, R., Delsinne, T., Eds.; Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 319–369. [Google Scholar]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef] [PubMed]
- Cultid, C.; Escobar, F. Pautas para la estimación y comparación estadística de la diversidad biológica (qD). In La Biodiversidad en un Mundo Cambiante: Fundamentos Teóricos y Metodológicos Para su Estudio; Moreno, C., Ed.; Universidad Autónoma del Estado de Hidalgo: Pachuca de Soto, Mexico, 2019; pp. 175–202. [Google Scholar]
- Schenker, N.; Gentleman, J.F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 2001, 55, 182–186. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.; Hsieh, T.C.; Sander, E.; Ma, K.H.; Colwell, R.; Ellison, A. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, C.D. Betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Branstetter, M.G.; Ješovnik, A.; Sosa-Calvo, J.; Lloyd, M.W.; Faircloth, B.C.; Brady, S.G.; Schultz, T.R. Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proc. R. Soc. Biol. 2017, 284, 20170095. [Google Scholar] [CrossRef]
- Koch, E.B.A.; dos Santos, J.R.M.; Nascimento, I.C.; Delabie, J.H.C. Comparative evaluation of taxonomic and functional diversities of leaf-litter ants of the Brazilian Atlantic Forest. Turk. J. Zool. 2019, 43, 437–546. [Google Scholar] [CrossRef]
- Moretti, M.; Dias, A.T.; de Bello, F.; Altermatt, F.; Chown, S.L.; Azcárate, F.M.; Bell, J.R.; Fournier, B.; Hedde, M.; Hortal, J.; et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 2017, 31, 558–567. [Google Scholar] [CrossRef]
- Martello, F.; De Bello, F.; De Castro Morini, M.S.; Silva, R.R.; De Souza-Campana, D.R.; Ribeiro, M.C.; Carmona, C.P. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci. Rep. 2018, 8, 3266. [Google Scholar] [CrossRef]
- Parr, C.L.; Dunn, R.R.; Sanders, N.J.; Weiser, M.D.; Photakis, M.; Bishop, T.R.; Fitzpatrick, M.C.; Arnan, X.; Baccaro, F.; Brandão, C.R.F.; et al. GlobalAnts: A new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Diver. 2017, 10, 5–20. [Google Scholar] [CrossRef]
- Sarty, M.; Abbott, K.L.; Lester, P.J. Habitat complexity facilitates coexistence in a tropical ant community. Oecologia 2006, 149, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Kaspari, M. Body size and microclimate use in Neotropical granivorous ants. Oecologia 1993, 96, 500–507. [Google Scholar] [CrossRef]
- Gibb, H.; Cunningham, S.A. Restoration of trophic structure in an assemblage of omnivores, Considering a revegetation chronosequence. J. Appl. Ecol. 2013, 50, 449–458. [Google Scholar] [CrossRef]
- Gibb, H.; Parr, C.L. Does Structural Complexity Determine the Morphology of Assemblages? An Experimental Test on Three Continents. PLoS ONE 2013, 8, e64005. [Google Scholar] [CrossRef]
- Feener, D.H.; Lighton, J.R.; Bartholomew, G.A. Curvilinear Allometry, Energetics and Foraging Ecology: A Comparison of Leaf-Cutting Ants and Army Ants. Funct. Ecol. 1988, 2, 509–520. [Google Scholar] [CrossRef]
- Gibb, H.; Stoklosa, J.; Warton, D.I.; Brown, A.M.; Andrew, N.R.; Cunningham, S.A. Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia 2015, 177, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Garnier, E.; Cortez, J.; Billès, G.; Navas, M.L.; Roumet, C.; Debussche, M.; Laurent, G.; Blanchard, A.; Aubry, D.; Bellmann, A.; et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 2004, 85, 2630–2637. [Google Scholar] [CrossRef]
- Almeida, R.P.; Teresa, F.B.; Camarota, F.; Izzo, T.J.; Silva, R.R.; Andrade-Silva, J.; de Arruda, F.V. The role of morphological traits in predicting the functional ecology of arboreal and ground ants in the Cerrado–Amazon transition. Oecologia 2023, 201, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, H.L.; Neves, K.C.; Vieira, J.; Carvalho, R.L. Land use intensification has extensive effects on the functional and phylogenetic diversity of neotropical ant communities. Biodivers. Conserv. 2024, 33, 2487–2502. [Google Scholar] [CrossRef]
- Casanoves, F.; Pla, L.; Di Rienzo, J.A. Valoración y Análisis de la Diversidad Funcional y su Relación con los Servicios Ecosistémicos; Serie Técnica Informe Técnico; Centro Agronómico Tropical de Investigación y Enseñanza (CATIE): Turrialba, Costa Rica, 2011; pp. 1–85. [Google Scholar]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.; Oksanen, M.J.; Suggests, M. The vegan package. Community Ecol. Package 2007, 10, 631–637. [Google Scholar]
- Fernández, F.; Guerrero, R.J.; Sánchez-Restrepo, A.F. Systematics and diversity of Neotropical ants. Rev. Col. Entomol. 2021, 47, e11082. [Google Scholar] [CrossRef]
- Fernández, F.; Guerrero, R.; Delsinne, T. Hormigas de Colombia; Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 387–1113. [Google Scholar] [CrossRef]
- Fernández, F.; Guerrero, R.; Delsinne, T. (Eds.) Filogenia y sistemática de las hormigas neotropicales. In Hormigas de Colombia; Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 57–89. [Google Scholar]
- García, E.I.; Tocora, M.C.; Fiorentino, G.; Escárraga, M.E.; Fernández, F.; Guerrero, R.J. Nuevos registros de hormigas (Hymenoptera: Formicidae) para Colombia. Biota Neotrop. 2020, 20, e20201088. [Google Scholar]
- Ward, P.S.; Brady, S.G.; Fisher, B.L.; Schultz, T.R. The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 2015, 40, 61–81. [Google Scholar] [CrossRef]
- Pennington, T.; Lavin, M.; Oliveira-Filho, A. Woody plant diversity, evolution, and ecology in the tropics: Perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 437–457. [Google Scholar] [CrossRef]
- Corro, E.J.; Ahuatzin, D.A.; Jaimes, A.A.; Favila, M.E.; Ribeiro, M.C.; López-Acosta, J.C.; Dáttilo, W. Forest cover and landscape heterogeneity shape ant–plant co-occurrence networks in human-dominated tropical rainforests. Landsc. Ecol. 2019, 34, 93–104. [Google Scholar] [CrossRef]
- Hethcoat, M.G.; King, B.J.; Fernández, F.; Ortiz-Sepúlveda, C.M.; Achiardi, F.C.; Edwards, F.A.; Medina, C.; Gilroy, J.J.; Haugaasen, T.; Edwards, D.P. The impact of secondary forest regeneration on ground-dwelling ant communities in the Tropical Andes. Oecologia 2019, 191, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Kuchenbecker, J.; Cuevas-Reyes, P.; Fagundes, M. Community structure of ants (Hymenoptera: Formicidae) in an open habitat: The importance of environmental heterogeneity and interspecific interactions. Rev. Mex. Biodiver. 2022, 93, e933900. [Google Scholar] [CrossRef]
- Siqueira, E.L.; Silva, R.R. Taxonomic and morphological diversity of the ground-dwelling ant fauna in Eastern Amazonian grasslands. Acta Oecologica 2021, 110, 103693. [Google Scholar] [CrossRef]
- Delsinne, T.; Sonet, G.; Nagy, Z.T.; Wauters, N.; Jacquemin, J.; Leponce, M. High species turnover of the ant genus Solenopsis (Hymenoptera: Formicidae) along an altitudinal gradient in the Ecuadorian Andes, indicated by a combined DNA sequencing and morphological approach. Invert. Syst. 2012, 26, 457–469. [Google Scholar] [CrossRef]
- Longino, J.T. A revision of the ant genus Octostruma Forel 1912 (Hymenoptera, Formicidae). Zootaxa 2013, 3699, 1–61. [Google Scholar] [CrossRef]
- Calle, Z.; Henao-Gallego, N.; Giraldo, C.; Armbrecht, I. A comparison of vegetation and ground-dwelling ants in abandoned and restored gullies and landslide surfaces in the Western Colombian Andes. Restor. Ecol. 2013, 21, 729–735. [Google Scholar] [CrossRef]
- Chanatásig-Vaca, C.; Huerta Lwanga, E.; Rojas Fernández, P.; Ponce-Mendoza, A.; Mendoza Vega, J.; Morón Ríos, A.; Van der Waal, H.; Dzib-Castilo, B. Efecto del uso de suelo en las hormigas (Formicidae: Hymenoptera) de Tikinmul, Campeche, México. Acta Zool. Mex. 2011, 27, 4441–4461. [Google Scholar] [CrossRef]
- Silva, P.; Bieber, A.; Corrêa, M.; Leal, I. Do leaf-litter attributes affect the richness of leaf-litter ants? Neotrop. Entomol. 2011, 40, 542–547. [Google Scholar] [PubMed]
- Mesa-s, L.; Santamaría, M.; García, H.; Aguilar-Cano, J. Catálogo de biodiversidad de la región caribe. In Serie Planeación Ambiental para la Conservación de la Biodiversidad en Áreas Operativas de Ecopetrol, 3rd ed.; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt—Ecopetrol S.A: Bogotá, Colombia, 2016. [Google Scholar]
- De La Vega, G.J.; Schilman, P.E. La importancia de la fisiología en la distribución geográfica de los insectos. Rev. Soc. Entomol Arg. 2015, 74, 101–108. [Google Scholar]
- Giweta, M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J. Ecol. Environ. 2020, 44, 11. [Google Scholar] [CrossRef]
- Pennington, R.; Prado, D.E.; Pendry, C.A. Neotropical seasonally dry forests and Quaternary vegetation changes. J. Biogeogr. 2000, 27, 261–273. [Google Scholar] [CrossRef]
- Dirzo, R. Seasonally Dry Tropical Forests: Ecology and Conservation; Island Press: Washington, DC, USA, 2011; pp. 1–408. [Google Scholar]
- Angulo, E.; Boulay, R.; Ruano, F.; Tinaut, A.; Cerdá, X. Anthropogenic impacts in protected areas: Assessing the efficiency of conservation efforts using Mediterranean ant communities. PeerJ 2016, 4, e2773. [Google Scholar] [CrossRef]
- Fernández, F.; y Sendoya, S. Synonymic list of neotropical ants (Hymenoptera: Formicidae). Biot. Col. 2004, 5, 3–105. [Google Scholar]
- Kaspari, M.; O’Donnell, S. High rates of army ant raids in the Neotropics and implications for ant colony and community structure. Evol. Ecol. Res. 2003, 5, 933–939. [Google Scholar]
- Abadía, J.C.; Bermúdez, C.; Lozano-Zambrano, F.H.; Chacón, P. Hormigas cazadoras en un paisaje subandino de Colombia: Riqueza, composición y especies indicadoras. Rev. Col. Ent. 2010, 36, 127–134. [Google Scholar] [CrossRef]
- Chacón de Ulloa, P.; Armbrecht, I.; Lozano-Zambrano, F.; Jiménez, E.; Fernández, F.; Arias, T.M. Aspectos de la ecología de hormigas cazadoras en bosques secos colombianos. In Sistemática, Biogeografía y Conservación de las Hormigas Cazadoras de Colombia; Jiménez, E., Fernández, F., Arias, T., Lozano-Zambrano, F., Eds.; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2008; pp. 513–531. [Google Scholar]
- Jiménez, B.; De la Rosa, N.; Naranjo, D.; Bustillo, R.; Parra, J.; Villalba, I.; Buelvas, C.; Pacheco, E.; Arrieta, J.; Castro, C.; et al. Plan de Manejo del Santuario de Flora y Fauna Los Colorados 2018–2023; Parques Nacionales Naturales de Colombia: Bogotá, Colombia, 2018. [Google Scholar]
- Bustos, J.; Ulloa-Chacón, P. Mirmecofauna y perturbación en un bosque de niebla neotropical (Reserva Natural Hato Viejo, Valle del Cauca, Colombia). Rev. Biol. Trop. 1996, 44, 259–266. [Google Scholar]
- Rivera, L.; Armbrecht, I. Diversidad de tres gremios de hormigas en cafetales de sombra, de sol y bosques de Risaralda. Rev. Col. Entomol. 2005, 31, 89–96. [Google Scholar] [CrossRef]
- Mason, N.W.; MacGillivray, K.; Steel, J.B.; Wilson, J.B. An index of functional diversity. J. Veg. Sci. 2003, 14, 571–578. [Google Scholar] [CrossRef]
- Carmona, C.P.; Guerrero, I.; Morales, M.B.; Oñate, J.J.; Peco, B. Assessing vulnerability of functional diversity to species loss: A case study in Mediterranean agricultural systems. Funct. Ecol. 2017, 31, 427–435. [Google Scholar] [CrossRef]
- Ricotta, C.; de Bello, F.; Moretti, M.; Caccianiga, M.; Cerabolini, B.E.; Pavoine, S. Measuring the functional redundancy of biological communities: A quantitative guide. Methods Ecol. Evol. 2016, 7, 1386–1395. [Google Scholar] [CrossRef]
- Leps, J.; de Bello, F.; Lavorel, S.; Berman, S. Quantifying and interpreting functional diversity of natural communities: Practical considerations matter. Preslia 2006, 78, 481–501. [Google Scholar]
Morphological Trait | Abbreviation | Functional Importance |
---|---|---|
Head length | HL | Related to the body size of the ant workers [65]. |
Head width | HW | Related to the size of the spaces through which ants can pass [66] and to the mandibular musculature. Wider heads have larger mandibular muscles allowing the capture of larger prey [67]. |
Mandible length | ML | Indicates the type of diet since longer mandibles would indicate more predatory behavior [68]; likewise, longer mandibles could allow for the capture of larger prey [34]. |
Eye length | EL | Related to the foraging period. It could also indicate the behavior in the search for food [38]. |
Interocular distance | ID | Related to hunting strategies [34] and habitat complexity [69]. |
Scape length | SL | Related to sensory capabilities: longer antennal scapes facilitate the tracking of pheromone trails [32]. |
Femur length | FL | Related to foraging speed, which reflects habitat complexity [70]. It may also be related to food quality in some specialist groups [32]. |
Weber length | WL | Indicative of body size, which can be related to the amount and type of resource exploited [22]. Body size can influence the microhabitats in which species forage [65]. Large-bodied ants typically forage in open conditions on the soil surface, while smaller species may occupy smaller spaces in enclosed microhabitats in leaf litter and soil [32,40]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo-Vanegas, J.; de la Hoz-Pedraza, S.; Sierra-Chamorro, H.; Guerrero, R.J. The Taxonomic and Functional Diversity of Leaf-Litter Dwelling Ants in the Tropical Dry Forest of the Colombian Caribbean. Diversity 2024, 16, 687. https://doi.org/10.3390/d16110687
Camargo-Vanegas J, de la Hoz-Pedraza S, Sierra-Chamorro H, Guerrero RJ. The Taxonomic and Functional Diversity of Leaf-Litter Dwelling Ants in the Tropical Dry Forest of the Colombian Caribbean. Diversity. 2024; 16(11):687. https://doi.org/10.3390/d16110687
Chicago/Turabian StyleCamargo-Vanegas, Jose, Sebastian de la Hoz-Pedraza, Hubert Sierra-Chamorro, and Roberto J. Guerrero. 2024. "The Taxonomic and Functional Diversity of Leaf-Litter Dwelling Ants in the Tropical Dry Forest of the Colombian Caribbean" Diversity 16, no. 11: 687. https://doi.org/10.3390/d16110687
APA StyleCamargo-Vanegas, J., de la Hoz-Pedraza, S., Sierra-Chamorro, H., & Guerrero, R. J. (2024). The Taxonomic and Functional Diversity of Leaf-Litter Dwelling Ants in the Tropical Dry Forest of the Colombian Caribbean. Diversity, 16(11), 687. https://doi.org/10.3390/d16110687