Linking Biodiversity and Functional Patterns of Estuarine Free-Living Nematodes with Sedimentary Organic Matter Lability in an Atlantic Coastal Lagoon (Uruguay, South America)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Design
2.2. Sample Collection and Analysis
2.3. Structure of Nematode Assemblages and Biological/Functional Traits
2.4. Statistical Analysis
3. Results
3.1. The Environment
3.2. The Nematofauna
4. Discussion
4.1. Environmental Patterns
4.2. Environmental Drivers of the Taxonomy Patterns
4.3. Environmental Drivers of Functional Patterns
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Underwood, A.J.; Chapman, M.G.; Connell, S.D. Observations in ecology: You can’t make progress on processes without understanding the patterns. J. Exp. Mar. Bio. Ecol. 2000, 250, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Morin, P.J. Community Ecology, 1st ed.; Blackwell Science, Inc.: New York, NY, USA, 2011; p. 384. [Google Scholar]
- Chang, C.Y.; Marshall, D.J. Spatial pattern of distribution of marine invertebrates within a subtidal community: Do communities vary more among patches or plots. Ecol. Evol. 2016, 6, 8330–8337. [Google Scholar] [CrossRef] [PubMed]
- Semprucci, F.; Sandulli, R. Editorial for Special Issue “Meiofauna Biodiversity and Ecology”. Diversity 2020, 12, 249. [Google Scholar] [CrossRef]
- Pérez-García, J.A.; Armenteros, M.; Diaz-Asencio, L.; Diaz-Asencio, M.; Ruiz-Abierno, A.; Fernadez-Garces, R.; Bolaños-Alvarez, Y.; Alonso-Hernandez, C. Spatial distribution of nematode assemblages in Cienfuegos Bay (Caribbean Sea), and their relationship with sedimentary environment. Meiofauna Mar. 2009, 17, 71–81. [Google Scholar]
- Sroczynska, K.; Chainho, P.; Vieira, S.; Adao, H. What makes a better indicator? Taxonomic vs functional response of nematodes to estuarine gradient. Ecol. Indic. 2021, 121, 107113. [Google Scholar] [CrossRef]
- Heino, J. Biodiversity of aquatic insects: Spatial gradients and environmental correlates of assemblage-level measures at large scales. Freshw. Rev. 2009, 2, 1–29. [Google Scholar] [CrossRef]
- Sheaves, M. Scale-dependent variation in composition of fish fauna among sandy tropical estuarine embayments. Mar. Ecol. Prog. Ser. 2006, 310, 173–184. [Google Scholar] [CrossRef]
- Friberg, N.; Bonada, N.; Bradley, D.C.; Dunbar, M.J.; Edwards, F.K.; Grey, J.; Hayes, R.B.; Hildrew, A.G.; Lamouroux, N.; Trimmer, M.; et al. Biomonitoring of human impacts in freshwater ecosystems. the good, the bad and the ugly. Adv. Ecol. Res. 2011, 44, 1–68. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Lalibert’e, E.; Nielsen, A.; Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 2010, 143, 2270–2279. [Google Scholar] [CrossRef]
- Kandratavicius, N.; Pastor de Ward, C.; Venturini, N.; Giménez, L.; Rodriguez, M.; Muniz, P. Response of estuarine free-living nematode assemblages to organic enrichment: An experimental approach. Mar. Ecol. Prog. Ser. 2018, 602, 117–133. [Google Scholar] [CrossRef]
- Franzo, A.; Asioli, A.; Roscioli, C.; Patrolecco, L.; Bazzaro, M.; Del Negro, P.; Cibic, T. Influence of natural and anthropogenic disturbances on foraminifera and freeliving nematodes in four lagoons of the Po delta system. Estuar. Coast. Shelf. Sci. 2019, 220, 99–110. [Google Scholar] [CrossRef]
- Franzo, A.; Del Negro, P. Functional diversity of free-living nematodes in river lagoons: Can biological traits analysis (BTA) integrate traditional taxonomic-based approaches as a monitoring tool? Mar. Environ. Res. 2019, 145, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Qiu, B.; Liu, X. Functional diversity patterns of macrofauna in the adjacent waters of the Yangtze River Estuary. Mar. Pollut. Bull. 2020, 154, 111032. [Google Scholar] [CrossRef] [PubMed]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends. Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef]
- Norling, K.; Rosenberg, R.; Hulth, S.; Grémare, A.; Bonsdorff, E. Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Mar. Ecol. Prog. Ser. 2007, 332, 11–23. [Google Scholar] [CrossRef]
- Schratzberger, M.; Warr, K.; Rogers, S.I. Functional diversity of nematode communities in the southwestern North Sea. Mar. Environ. Res. 2007, 63, 368–389. [Google Scholar] [CrossRef]
- Heip, P.C.; Vincx, M.; Vranken, G. The ecology of marine nematodes. Oceanogr. Mar. Biol. Annu. Rev. 1985, 23, 399–489. [Google Scholar]
- Danovaro, R.; Gambi, M.C.; Mirto, S.; Sandulli, R.; Ceccherelli, V.U. Meiofauna. In Biologia Marina Mediterranea; Gambi, M.C., Dappiano, M., Eds.; Societa Italiana Di Biologia Marina: Genova, Italy, 2004; Chapter 3; Volume 11, pp. 55–97. [Google Scholar]
- Wieser, W. Die Beziehung zwischen Mundhöhlengestalt, Ernährungswiese und 1000 Vorkommen bei freilebenden marinen Nematoden. Ark. Zool. 1953, 4, 439–484. [Google Scholar]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Bongers, T.; Alkemade, R.; Yeates, G.W. Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Mar. Ecol. Prog. Ser. 1991, 76, 135–142. [Google Scholar] [CrossRef]
- Nasri, A.; Aïssa, P.; Beyrem, H.; Mahmoudi, E. New Approach for the Evaluation of Ecological Quality in the Mediterranean Coastal Ecosystems, Case Study of Bizerte Lagoon: Marine Nematodes Functional Traits Assessment. In Nematodes—Recent Advances, Management and New Perspectives; Bellé, C., Kaspary, T., Eds.; Licensee IntechOpen: London, UK, 2022; 234p. [Google Scholar] [CrossRef]
- Danovaro, R.; Gambi, C. Biodiversity and trophic structure of nematode assemblages in sea- grass systems: Evidence for a coupling with changes in food availability. Mar. Biol. 2002, 141, 667–677. [Google Scholar] [CrossRef]
- Kandratavicius, N.; Muniz, P.; Venturini, N.; Giménez, L. Meiobenthic communities in permanently open estuaries and open/closed coastal lagoons of Uruguay (Atlantic coast of South America). Estuar. Coast. Shelf Sci. 2015, 163, 44–53. [Google Scholar] [CrossRef]
- Galois, R.; Blanchard, G.; Seguignes, M.; Huet, V.; Joassard, L. Spatial distribution of sediment particulate organic matter on two estuarine mufllats: A comparison between Marennes-Oléron Bay (France) and the Humber estuary. Cont. Shelf Res. 2000, 20, 1199–1217. [Google Scholar] [CrossRef]
- Forster, S.J. Osmotic stress tolerance and osmoregulation of intertidal and subtidal nematodes. J. Exp. Mar. Bio. Ecol. 1998, 224, 109–125. [Google Scholar] [CrossRef]
- Moens, T.; Vincx, M. Temperature and salinity constraints on the life cycle of two brackishwater nematode species. J. Exp. Mar. Bio. Ecol. 2000, 243, 115–135. [Google Scholar] [CrossRef]
- Ward, A.R. Studies on the sublittoral free living nematodes of Liverpool Bay II Influence of sediment composition on the distribution of marine nematodes. Mar. Biol. 1975, 30, 217–225. [Google Scholar] [CrossRef]
- Schratzberger, M.; Whomersley, P.; Kilbride, R.; Rees, H.L. Structure and taxonomic composition of subtidal nematode and macrofauna assemblages at four stations around the UK coast. J. Mar. Biol. Assoc. U. K. 2004, 84, 315–322. [Google Scholar] [CrossRef]
- Gray, J.S.; Elliott, M. Ecology of Marine Sediments; Oxford University Press: Oxford, UK, 2009; p. 225. [Google Scholar]
- Stachowicz, J.J.; Bruno, J.F.; Duffy, J.E. Understanding the effects of marine biodiversity on communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 739–766. [Google Scholar] [CrossRef]
- Heip, C.; Hummel, H.; van Avesaath, P.; Appeltans, W.; Arvaniditis, C.; Aspden, R.; Austen, M.C.; Boero, F.; Bouma, T.J.; Boxshall, G.; et al. Marine Biodiversity and Ecosystem Functioning; Printbase. Marine Biodiversity and Ecosystem Functioning, EU Network of Excellence: Dublin, Ireland, 2009; p. 91, ISSN 2009–2539. Available online: https://pure.mpg.de/rest/items/item_2485287/component/file_3266710/content (accessed on 6 November 2024).
- Reiss, J.; Bridle, J.R.; Montoya, J.M.; Woodward, G. Emerging horizons in biodiversity and ecosystem functioning research. Trends. Ecol. Evo. 2009, 24, 505–514. [Google Scholar] [CrossRef]
- Materatski, P.; Ribeiro, R.; Moreira-Santos, M.; Sousa, J.P.; Adão, H. Nematode biomass and morphometric attributes as descriptors during a major Zostera noltii collapse. Mar. Biol. 2018, 165, 1–17. [Google Scholar] [CrossRef]
- Kjerfve, B.; Magill, K. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar. Geol. 1989, 88, 187–199. [Google Scholar] [CrossRef]
- Conde, D.; Aubriot, L.; Sommaruga, R. Changes in UV penetration associated with marine intrusions and freshwater discharge in a shallow coastal lagoon of the Southern Atlantic Ocean. Mar. Ecol. Prog. Ser. 2000, 207, 19–31. [Google Scholar] [CrossRef]
- Conde, D.; Rodríguez-Gallego, L. Problemática Ambiental y Gestión de las Lagunas Costeras Atlánticas de Uruguay; Perfil Ambient. 2002. Domínguez, A., Prieto, R., Eds.; NORDAN: Montevideo, Uruguay, 2002; pp. 149–166. [Google Scholar]
- Conde, D.; Rodríguez-Gallego, L.; Rodríguez-Graña, L. Análisis Conceptual de las Interacciones Abióticas y Biológicas Entre el Océano y las Lagunas de la Costa Atlántica de Uruguay; Informe final FREPLATA; Sección Limnología, Facultad de Ciencias, Universidad de la República: Montevideo, Uruguay, 2003. [Google Scholar]
- Conde, D.; Solari, S.; de Álava, D.; Rodríguez-Gallego, L.; Verrastro, N.; Chreties, C.; Lagos, X.; Piñeiro, G.; Teixeira, L.; Seijo, L.; et al. Ecological and social basis for the development of a sand barrier breaching model in Laguna de Rocha, Uruguay. Estuar. Coast. Shelf Sci. 2019, 219, 300–316. [Google Scholar] [CrossRef]
- Lozoya, J.P.; Conde, D.; Asmus, M.; Polette, M.; Píriz, C.; Martins, F.; de Álava, D.; Marenzi, R.; Nin, M.; Anello, L.; et al. Linking social perception and risk analysis to assess vulnerability of coastal socioecological systems to climate change in Atlantic South America. In Handbook of Climate Change Adaptation. Vol 1: Climate Change Impacts and Management; Leal, W., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2015; Volume 22, pp. 373–399. [Google Scholar]
- Fabiano, G.; Santana, O. Las pesquerías en las lagunas salobres de Uruguay. In Bases para la Conservación y el Manejo de la Costa Uruguaya; Menafra, R., Rodríguez-Gallego, R.L., Scarabino, F., Conde, D., Eds.; Vida Silvestre: Montevideo, Uruguay, 2006; pp. 557–565. [Google Scholar]
- Aubriot, L.; Conde, D.; Bonilla, S.; Hein, V.; Britos, A. Vulnerabilidad de una laguna costera en una Reserva de Biosfera: Indicios recientes de eutrofización. In Taller Internacional de Eutrofización de Lagos y Embalses; Vila, I., Pizarro, I., Eds.; Patagonia Impresores: Santiago de Chile, Chile, 2005; pp. 65–85. [Google Scholar]
- Rodríguez-Gallego, L.; Conde, D.; Achkar, M.; Sabaj, V.; Rodó, E.; Arocena, R. Impacto del uso del suelo en la cuenca de la Laguna de Rocha. Resumen extendido. In Proceedings of the IV Congreso Nacional de Áreas Protegidas y V Encuentro Nacional de Ecoturismo y Turismo Rural Trinidad, Flores, Uruguay; 2009. [Google Scholar]
- Levin, S.A. The problem of pattern and scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Giménez, L.; Borthagaray, A.; Rodríguez, M.; Brazeiro, A.; Dimitriadis, K. Scale-dependent patterns of macroinfaunal distribution in soft sediment intertidal habitats along a large scale estuarine gradient. Helgol. Mar. Res. 2005, 59, 224–236. [Google Scholar] [CrossRef]
- Giménez, L.; Dimitriadis, C.; Carranza, A.; Borthagaray, A.I.; Rodríguez, M. Unravelling the complex structure of a benthic community: A multiscale-multianalytical approach to an estuarine sandflat. Estuar. Coast. Shelf Sci. 2006, 68, 462–472. [Google Scholar] [CrossRef]
- Giménez, L.; Venturini, N.; Kandratavicius, N.; Hutton, M.; Lanfranconi, A.; Rodríguez, M.; Brugnoli, E.; Muniz, P. Macrofaunal patterns and animal-sediment relationships in Uruguayan estuaries and coastal lagoons (Atlantic coast of South America). J. Sea Res. 2014, 87, 46–55. [Google Scholar] [CrossRef]
- Pita, A.L.; Giménez, L.; Kandratavicius, N.; Muniz, M.; Venturini, N. Benthic trophic state of estuaries with distinct morphodynamic on the South-western Atlantic coast. Mar. Freshw. Res. 2017, 68, 2028–2040. [Google Scholar] [CrossRef]
- Meteomanz© 2005–2023. Available online: http://www.meteomanz.com. (accessed on 22 August 2024).
- Lorenzen, C.J. Determination of chlorophyll and pheopigments: Spectrofotometric equations. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- Sündback, K. Microphytobenthos on Sand in Shallow Brackish Water. Öresund Sweeden. Primary Production, Chlorophyll a Content and Spices Composition (Diatom) in Relation to Some Ecological Factors. Ph.D. Thesis, Department of Systematic Botany, University of Lund, Lund, Sweden, 1983. [Google Scholar]
- Byers, S.; Mills, E.; Stewart, P. Comparison of methods of determining organic carbon in marine sediments, with suggestions for a standard method. Hydrobiologia 1978, 58, 43–47. [Google Scholar] [CrossRef]
- Danovaro, R. Methods for the Study of Deep-Sea Sediments, Their Functioning and Biodiversity; CRC Press: New York, NY, USA, 2010; p. 458. [Google Scholar]
- Hartree, E.F. Determination of proteins: A modification of the Lowry method that give a linear photometric response. Anal. Biochem. 1972, 48, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.L. The detritus nitrogen problem: New observations and perspectives from organic geochemistry. Mar. Ecol. Prog. Ser. 1982, 9, 153–162. [Google Scholar] [CrossRef]
- Gerchakov, S.M.; Hatcher, P.G. Improved technique for analysis of carbohydrates in the sediment. Limnol. Oceanogr. 1972, 17, 938–943. [Google Scholar] [CrossRef]
- Marsh, J.B.; Weinstein, D.B. Simple charring methods for determination of lipids. J. Lipid. Res. 1966, 7, 574–576. [Google Scholar] [CrossRef]
- Fabiano, M.; Danovaro, R. Composition of Organic Matter in Sediments Facing a River Estuary (Tyrrhenian Sea): Relationships with Bacteria and Microphytobenthic Biomass. Hydrobiologia 1994, 277, 71–84. [Google Scholar] [CrossRef]
- Fabiano, M.; Danovaro, R.; Fraschetti, S. A three-year time series of elemental and biochemical of organic matter in subtidal sand sediments of the Ligurian Sea (Northwestern Mediterranean). Cont. Shelf Res. 1995, 15, 1453–1469. [Google Scholar] [CrossRef]
- Pfannkuche, O.; Thiel, H. “Sample processing”. In Introduction to the Study of Meiofauna; Higgins, R.P., Thiel, H., Eds.; Smithsonian Institute Press: Washington, DC, USA, 1988; pp. 134–145. [Google Scholar]
- Vincx, M. Meiofauna in marine and freshwater sediments. In Methods for the Examination of Organismal Diversity in Soils and Sediments; Hall, G.S.m, Ed.; CAB International: Wallingford, UK, 1996; pp. 187–195. [Google Scholar]
- Platt, H.M.; Warwick, R.M. Free living marine nematodes. Part I. British Enoplids. In Synopses of the British Fauna N°28; Kermack, D.M., Barnes, R.S.K., Eds.; Published for the Linnean Society of London & the Estuarine & Brackish-Water Sciences Association; Cambridge University Press: Cambridge, UK, 1983; p. 307. [Google Scholar]
- Platt, H.M.; Warwick, R.M. Free living marine nematodes. Part II. British Chromadorids. In Synopses of the British Fauna 38; (New Series); Kermack, D.M., Barnes, R.S.K., Eds.; Published for the Linnean Society of London & the Estuarine & Brackish-Water Sciences Association; Leiden: London, UK, 1988; p. 502. [Google Scholar]
- Warwick, R.M.; Carr, M.R.; Clarke, K.R.; Gee, J.M.; Green, R.H. A mesocosm experiment on the effects of hydrocarbon and copper pollution on a sublittoral softsediment meiobenthic community. Mar. Ecol. Prog. Ser. 1988, 46, 181–191. [Google Scholar] [CrossRef]
- Bezerra, T.N.; Decraemer, W.; Eisendle-Flöckner, U.; Hodda, M.; Holovachov, O.; Leduc, D.; Miljutin, D.; Mokievsky, V.; Peña Santiago, R.; Sharma, J.; et al. Nemys: World Database of Free-Living Marine Nematodes; 2024. Available online: https://www.nemys.ugent.be/ (accessed on 22 August 2024).
- Clarke, K.R.; Gorley, R.N. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-v6; Plymouth Marine Laboratory: Plymouth, UK, 2006. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Perissinotto, R.; Stretch, D.D.; Whitfield, A.K.; Adams, J.B.; Forbes, A.T.; Demetriades, N.T. Ecosystem functioning of temporarily open/closed estuaries in South Africa. In Estuaries: Types, Movement Patterns and Climatical Impacts; Crane, J.R., Solomon, A.E., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 1–69. [Google Scholar]
- Meerhoff, E.; Rodríguez-Gallego, L.; Giménez, L.; Conde, D.; Muniz, P. Spatial patterns of macrofaunal community structure in coastal lagoons of Uruguay. Mar. Ecol. Prog. Ser. 2013, 492, 97–110. [Google Scholar] [CrossRef]
- Dell’Anno, A.; Mei, M.L.; Pusceddu, A.; Danovaro, R. Assessing the trophic state and eutrophication of coastal marine systems: A new approach based on the biochemical composition of sediment organic matter. Mar. Pollut. Bull. 2002, 7, 611–622. [Google Scholar] [CrossRef]
- Joseph, M.M.; Ratheesh Kumar, C.S.; Greesh Kumar, T.R.; Renjith, K.R.; Chandramohanakumar, N. Biogeochemistry of surficial sediments in the intertidal systems of a tropical environment. Chem. Ecol. 2008, 24, 247–258. [Google Scholar] [CrossRef]
- Danovaro, R.; Della Croce, N.; Marrale, D.; Martorano, D.; Parodi, P.; Pusceddu, A.; Fabiano, M. Biological indicators of oil induced disturbance in coastal sediments of the Ligurian Sea. In Assessment & Monitoring of Marine Science; Lokman, S., Shazili, N.A.M., Nasir, M.S., Borowtizka, M.A., Eds.; University Putra Malaysia Terengganu: Kuala Terengganu, Malaysia, 1999; pp. 75–85. [Google Scholar]
- Danovaro, R.; Fabiano, M.; Della Croce, N. Labile organic matter and microbial biomasses in deep-sea sediments (Eastern Mediterranean Sea). Deep-Sea Res. 1993, 40, 953–965. [Google Scholar] [CrossRef]
- Pusceddu, A.; Dell’Anno, A.; Danovaro, R.; Manini, E.; Sarà, G.; Fabiano, M. Enzymatically hydrolyzable protein and carbohydrate sedimentary pools as indicators of the trophic state of detritus sink systems: A case study in a Mediterranean coastal lagoon. Estuaries 2003, 26, 641–650. [Google Scholar] [CrossRef]
- Pallo, P.; Widbom, B.; Olafsson, E. A quantita- tive sampling of the benthic meiofauna in the Gulf of Riga (Eastern Baltic Sea) with special reference to the structure of nematode assemblages. Ophelia 1998, 49, 117–139. [Google Scholar] [CrossRef]
- Venekey, V. Actualização do Conhecimento Taxonomico dos Nematoda Brasilera e sua Ecología na Praia de Tamandare PE (Brasil); Universidade Federal de Pernambuco: Recife, Brasil, 2007; 144p. [Google Scholar]
- Losi, V.; Ferrero, T.J.; Moreno, M.; Gaozza, L.; Rovere, A.; Firpo, M.; Marques, J.C.; Albertelli, G. The use of nematodes in assessing ecologic al conditions in shallow waters surrounding a Mediterranean harbour facility. Estuar. Coast. Shelf Sci. 2013, 130, 209–222. [Google Scholar] [CrossRef]
- Grzelak, K.; Tamborski, J.; Kotwicki, L.; Bokuniewicz, H. Ecostructuring of marine nematode communities by submarine groundwater discharge. Mar. Environ. Res. 2018, 136, 106–119. [Google Scholar] [CrossRef]
- Danovaro, R.; Fabiano, M.; Vincx, M. Meiofauna response to the Agip Abruzzob oil spill in subtidal sediments of the Ligurian Sea. Mar. Pollut. Bull. 1995, 30, 133–145. [Google Scholar] [CrossRef]
- Hassan, L.; Nashaat, M.R. First record of free-living soil nematodes, Mesorhabditis minuta (Bostrom, 1991) in Iraq. Biochem. Cell. Arch. 2018, 18, 1289–1292. [Google Scholar]
- Gagarin, V.G.; Thanh, N.V. Four species of the genus Halalaimus de Man. 1888 (Nematode: Enoplida) from Mekong River Delta, Vietnam. Int. J. Nematol. 2004, 14, 213–220. [Google Scholar]
- Venekey, V.; Fonseca-Genovois, V.G.; Santos, P. Biodiversity of free-living marine nematodes on the coast of Brazil: A review. Zootaxa 2010, 2568, 39–66. [Google Scholar] [CrossRef]
- Eisenback, J.D.; Triantaphyllou, H.H. Root-knot nematodes: Meloidogyne species and races. In Manual of Agricultural Nematology, 1st ed.; Nickle, W.R., Ed.; CRC Press: New York, NY, USA, 1991; pp. 191–274. [Google Scholar]
- Bruland, K.W.; Bertine, K.; Koide, M.; Goldberg, E.D. History of metal pollution in Southern California coastal zone. Environ. Sci. Technol. 1974, 8, 425–432. [Google Scholar] [CrossRef]
- Eyualem, E.A.; Andrássy, I.; Traunspurger, W.; Eyualem-Abebe, E. Freshwater Nematodes: Ecology and Taxonomy; CABI Publishing: Oxfordshire, UK, 2006; p. 253. [Google Scholar] [CrossRef]
- Patrício, J.; Adão, H.; Neto, J.M.; Alves, A.S.; Traunspurger, W.; Marques, J.C. Do nematode and macrofauna assemblages provide similar ecological assessment information? Ecol. Indic. 2012, 14, 124–137. [Google Scholar] [CrossRef]
- Mirto, S.; La Rosa, T.; Gambi, C.; Danovaro, R.; Mazzola, A. Nematode community response to fish-farm impact in the western Mediterranean. Environ. Pollut. 2002, 116, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Schratzberger, M.; Warr, K.; Rogers, S.I. Patterns of nematode populations in the southwestern North Sea and their link to other components of the benthic fauna. J. Sea Res. 2006, 55, 113–127. [Google Scholar] [CrossRef]
- Jensen, P.; Rumohr, J.; Graf, G. Sedimentological and biological differences across a deep-sea ridge exposed to advection and accumulation of fine-grained particles. Oceanol. Acta. 1992, 15, 287–296. [Google Scholar]
- Soetaert, K.; Heip, C. Nematode assemblages of deep sea and shelf break sites in the North Atlantic and Mediterranean Sea. Mar. Ecol. Prog. Ser. 1995, 125, 171–183. [Google Scholar] [CrossRef]
- Moens, T.; Vincx, M. Observations on the feeding ecology of estuarine nematodes. J. Mar. Biol. Assoc. U. K. 1997, 77, 211–227. [Google Scholar] [CrossRef]
- Kapusta, S.C.; Würdig, N.L.; Bemvenuti, C.E.; Pinto, T.K. Spatial and temporal distribution of Nematoda in a subtropical estuary. Acta Limnol. Bras. 2006, 182, 133–144. [Google Scholar]
- Palmer, M.A.; Gust, G. Dispersal of meiofauna in a turbulent tidal creek. J. Mar. Res. 1985, 43, 179–210. [Google Scholar] [CrossRef]
- Gooday, A.J. Biological responses to seasonally varying fluxes of organic matter to the sea floor: A review. J. Oceanogr. 2002, 58, 305–332. [Google Scholar] [CrossRef]
- Ruhl, H.A.; Ellena, J.A.; Smith, K.L., Jr. Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proc. Natl. Acad. Sci. USA 2008, 105, 17006–17011. [Google Scholar] [CrossRef]
- Henrichs, S.M. Early diagenesis of organic matter in marine sediments: Progress and perplexity. Mar. Chem. 1992, 39, 119–149. [Google Scholar] [CrossRef]
- Barreiro, M.; Arizmendi, F.; Díaz, N.; Trinchin, R. Integración del Enfoque de Adaptación en Ciudades, Infraestructura y Ordenamiento Territorial en Uruguay: Análisis de la Variabilidad y Tendencias Observadas de los Vientos en Uruguay. CONVENIO PNUD-UDELAR Proyecto URU/18/002. Ministerio de Ambiente 2021. Available online: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/documentos/publicaciones/FCIEN_An%C3%A1lisis%20de%20las%20variabilidad%20y%20tendencias%20observadas%20de%20los%20vientos%20en%20Uruguay_c.pdf (accessed on 22 August 2024).
- Calles Procel, A.K.; Vincx, M.; Degraer, S.; Arcos, F.; Gheskiere, T. The dominance of predatory nematodes at the high water level in an Ecuadorian sandy beach. In Spatial and Temporal Patterns of Meiofauna along Ecuadorian Sandy Beaches, with a Focus on Nematode Biodiversity; Calles Procel, A.K., Ed.; Ghent University: Ghent, Belgium, 2006; pp. 89–118. [Google Scholar]
- Tietjen, J.H. The ecology of shallow water meiofauna in two New England estuaries. Oecolgia 1969, 2, 251–291. [Google Scholar] [CrossRef] [PubMed]
- Armenteros, M.; Pérez-García, J.A.; Ruiz-Abierno, A.; Díaz-Asencio, L.; Helguera, Y.; Vincx, M.; Decraemer, W. Effects of organic enrichment on nematode assemblages in a microcosm experiment. Mar. Environ. Res. 2010, 70, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Semprucci, F.; Losi, V.; Moreno, M. A review of Italian research on free-living marine nematodes and the future perspectives on their use as ecological indicators (EcoInds). Mediterr. Mar. Sci. 2015, 16, 352–365. [Google Scholar] [CrossRef]
- Semprucci, F.; Colantoni, G.; Baldelli, M.; Rocchi, M.; Balsamo, M. The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Mar. Ecol. 2010, 31, 592–607. [Google Scholar] [CrossRef]
- Semprucci, F.; Moreno, M.; Sbrocca, S.; Rocchi, M.; Albertelli, G.; Balsamo, M. The nematode assemblage as a tool for the assessment of marine ecological quality status: A case-study in the Central Adriatic Sea. Mediterr. Mar. Sci. 2013, 14, 48–57. [Google Scholar] [CrossRef]
Spring | Autumn | |||||||
---|---|---|---|---|---|---|---|---|
Sites | Depth (m) | Temperature (°C) | Salinity | pH | Depth (m) | Temperature (°C) | Salinity | pH |
O1 | 1 | 22.1 | 7.8 | 8.23 | 0.3 | 20.4 | 24.3 | 8.84 |
O2 | 1 | 21.7 | 7.9 | 8.35 | 0.6 | 20.6 | 25.1 | 8.67 |
O3 | 1 | 23.3 | 8.4 | 8.59 | 0.3 | 22 | 26 | 8.42 |
O4 | 1.2 | 23.1 | 8.2 | 8.59 | 1.6 | 20.9 | 26 | 8.01 |
O5 | 1 | 22.5 | 7.7 | 8.39 | 0.2 | 20.1 | 19.7 | 8.58 |
O6 | 0.7 | 23.3 | 8 | 8.5 | 0.3 | 20.8 | 19.4 | 8.56 |
I1 | 1.8 | 21.4 | 7.4 | 8.08 | 1.7 | 18.8 | 17.2 | 8.2 |
I2 | 1.8 | 21.6 | 7.2 | 8.06 | 1.6 | 18.5 | 17.1 | 8.26 |
I3 | 1.6 | 21 | 6.4 | 8 | 1.6 | 18.5 | 17.1 | 8.25 |
I4 | 1.2 | 21.3 | 7.6 | 8.37 | 0.3 | 22.9 | 16.5 | 8.3 |
I5 | 1 | 22.3 | 8.2 | 8.49 | 0.5 | 23 | 16.9 | 8.54 |
I6 | 0.7 | 22.6 | 8.2 | 8.43 | 0.3 | 24.1 | 17.2 | 8.32 |
Spring | Autumn | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model | Estimate | Std Error | t Value | Pr(>|t|) | Estimate | Std Error | t Value | Pr(>|t|) | |
OM | Intercept | 0.009142 | 0.007571 | 1.208 | 0.227 | 0.007983 | 0.007302 | 1.093 | 0.27427 |
Sector | 0.057063 | 0.011086 | 5.147 | 2.64 × 10−7 *** | 0.030412 | 0.010326 | 2.945 | 0.00323 ** | |
Chl-a | Intercept | 3.830 | 3.088 | 1.24 | 0.214812 | 8.309 | 2.149 | 3.866 | 0.000111 *** |
Sector | 16.849 | 4.457 | −3.78 | 0.000157 *** | 4.204 | 3.039 | 1.383 | 0.166633 | |
Phaeopig | Intercept | 1.019 | 3.320 | 0.307 | 0.759 | 2.977 | 2.513 | 1.184 | 0.236310 |
Sector | 24.017 | 4.856 | 4.946 | 7.56 × 10−7 *** | 12.139 | 3.555 | 3.415 | 0.000637 *** | |
PTR | Intercept | 1.0065 | 0.3300 | 3.050 | 0.00229 ** | 0.8762 | 0.2899 | 3.023 | 0.0025 ** |
Sector | 2.6729 | 0.4854 | 5.507 | 3.65 × 10−8 *** | 1.7048 | 0.4099 | 4.159 | 3.2 × 10−5 *** | |
CHO | Intercept | 0.8438 | 0.2412 | 3.498 | 0.000469 *** | 1.1689 | 0.2677 | 4.367 | 1.26 × 10−5 *** |
Sector | 0.9905 | 0.3545 | 2.794 | 0.005210 ** | 0.8342 | 0.3786 | 2.204 | 0.0275 * | |
LIP | Intercept | 0.1891 | 0.1581 | 1.196 | 0.232 | 0.3026 | 0.1709 | 1.771 | 0.0766 |
Sector | 1.0033 | 0.2303 | 4.356 | 1.33 × 10−5 *** | 1.0558 | 0.2417 | 4.369 | 1.25 × 10−5 *** | |
BPC | Intercept | 0.8211 | 0.1936 | 4.242 | 6.86 × 10−5 *** | 1.1238 | 0.2925 | 3.842 | 0.000122 *** |
Sector | 2.6098 | 0.2738 | 9.533 | 3.71 × 10−14 *** | 1.9609 | 0.4137 | 4.740 | 2.14 × 10−6 *** | |
Gravel | Intercept | 522.4 | 108.5 | 4.814 | 2.99 × 10−5 *** | 522.4 | 108.5 | 4.814 | 2.99 × 10−5 *** |
Sector | −512.2 | 108.6 | −4.718 | 3.97 × 10−5 *** | −512.2 | 108.6 | −4.718 | 3.97 × 10−5 *** | |
Mud | Intercept | 13.980 | 1.873 | 7.462 | 1.17 × 10−8 *** | 35.357 | 5.304 | 6.666 | 1.19 × 10−7 *** |
Sector | −11.736 | 1.897 | −6.185 | 4.96 × 10−7 *** | −31.979 | 5.328 | −6.002 | 8.56 × 10−7 *** | |
Coarse Sand | Intercept | 0.4152 | 0.3451 | 4.971 | 1.87 × 10−5 *** | 1.4084 | 0.3021 | 4.661 | 4.7 × 10−5 *** |
Sector | 4.9929 | 1.3928 | 3.585 | 0.00105 ** | 2.9553 | 0.9837 | 3.004 | 0.00497 ** | |
Medium Sand | Intercept | 4.604 | 1.104 | 4.172 | 0.000197 *** | 5.387 | 1.002 | 5.376 | 5.58 × 10−6 *** |
Sector | 4.796 | 2.509 | 1.911 | 0.064417 | 4.747 | 2.135 | 2.223 | 0.0329 * | |
Fine Sand | Intercept | 7.873 | 2.011 | 3.915 | 0.000412 *** | 13.490 | 2.304 | 5.854 | 1.33 × 10−6 *** |
Sector | −2.611 | 2.418 | −1.080 | 0.287906 | −9.897 | 2.385 | −4.151 | 0.00021 *** | |
Medium grain size | Intercept | 0.0020259 | 0.0002110 | 9.603 | 3.26 × 10−11 *** | 0.0020465 | 0.0002901 | 7.055 | 3.81 × 10−8 *** |
Sector | −0.0004943 | 76.074 | −1.869 | 0.0702 | 0.0017483 | 0.0006112 | 2.861 | 0.00718 ** | |
Homogeneity | Intercept | 0.0035063 | 0.0003920 | 8.944 | 1.88 × 10−10 *** | 0.58567 | 0.07701 | 7.605 | 7.76 × 10−9 *** |
Sector | −0.0026019 | 0.0004049 | −6.426 | 2.42 × 10−7 *** | −0.40652 | 0.08053 | −5.048 | 1.49 × 10−5 *** |
SPRING | AUTUMN | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sites | BPC (mg C g−1) | PRT/CHO | CHO/LIP | BPC (mg C g−1) | PRT/CHO | CHO/LIP | ||||||||||||
O1 | 1.32 | ± | 0.2 | 1.67 | ± | 0.73 | 4.31 | ± | 0.69 | 1.04 | ± | 0.02 | 0.88 | ± | 0.04 | 6.28 | ± | 0.14 |
O2 | 0.23 | ± | 0.01 | 2.09 | ± | 0.2 | 4.39 | ± | 2.49 | 1 | ± | 0.28 | 0.51 | ± | 0.02 | 4.56 | ± | 2.3 |
O3 | 0.68 | ± | 0.03 | 1.74 | ± | 0.21 | 3.83 | ± | 0.63 | 0.17 | ± | 0 | 0.7 | ± | 0.03 | 4.36 | ± | 1.87 |
O4 | 0.06 | ± | 0.01 | 1.31 | ± | 0.05 | 4.88 | ± | 3.67 | 1.25 | ± | 0.27 | 0.52 | ± | 0.17 | 0.52 | ± | 0.17 |
O5 | 0.68 | ± | 0.01 | 1.44 | ± | 0.42 | 4.05 | ± | 1.98 | 1.05 | ± | 0.19 | 0.77 | ± | 0.05 | 2.75 | ± | 0.3 |
O6 | 1.96 | ± | 0.01 | 0.95 | ± | 0.03 | 4.52 | ± | 0.15 | 2.22 | ± | 0.18 | 1.05 | ± | 0.06 | 2.96 | ± | 0.33 |
I1 | 3.43 | ± | 0.19 | 2.18 | ± | 0.14 | 1.38 | ± | 0.31 | 3.97 | ± | 0.13 | 2.31 | ± | 0.47 | 0.89 | ± | 0.33 |
I2 | 4.02 | ± | 0.12 | 1.66 | ± | 0.18 | 2.1 | ± | 0.89 | 3.59 | ± | 0.24 | 0.5 | ± | 0.03 | 1.76 | ± | 0.21 |
I3 | 3.13 | ± | 0.01 | 1.99 | ± | 0.24 | 1.59 | ± | 0.01 | 3.68 | ± | 0.18 | 1.19 | ± | 0.19 | 1.82 | ± | 0.29 |
I4 | 3.67 | ± | 0.12 | 5.1 | ± | 1.29 | 0.72 | ± | 0.21 | 2.62 | ± | 0.48 | 2.66 | ± | 0.86 | 1.42 | ± | 0.69 |
I5 | 4.82 | ± | 0.87 | 1.88 | ± | 0.2 | 1.35 | ± | 0.62 | 3.13 | ± | 0.25 | 1.41 | ± | 0.03 | 1.15 | ± | 0.21 |
I6 | 1.51 | ± | 0.27 | 0.93 | ± | 0.08 | 13.76 | ± | 3.18 | 1.52 | ± | 0.09 | 0.97 | ± | 0.07 | 3.9 | ± | 0.24 |
Spring | Autumn | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model | Estimate | Std Error | t Value | Pr(>|t|) | Estimate | Std Error | t Value | Pr(>|t|) | |
Anonchus | Intercept | - | - | - | - | 0.6611 | 1.6709 | 0.396 | 0.692 |
Sector | - | - | - | - | 10.6512 | 2.3630 | 4.507 | 6.56 × 10−6 *** | |
Anoplostoma | Intercept | 2.558 | 1.955 | 1.308 | 0.191 | 0.6611 | 0.5272 | 1.254 | 0.210 |
Sector | 1.409 | 2.792 | 0.505 | 0.614 | 0.8815 | 0.7455 | 1.182 | 0.237 | |
Daptonema | Intercept | 2.355 | 1.232 | 1.911 | 0.056 | 1.983 | 1.474 | 1.346 | 0.178 |
Sector | 1.832 | 1.765 | 1.038 | 0.299 | 3.159 | 2.084 | 1.516 | 0.130 | |
Leptolaimus | Intercept | 2.3015 | 1.2519 | 1.838 | 0.066 | 3.967 | 1.911 | 2.076 | 0.0379 * |
Sector | 0.4898 | 1.7789 | 0.275 | 0.783 | −1.175 | 2.702 | −0.435 | 0.6636 | |
Neochromadora | Intercept | 7.313 | 1.748 | 4.183 | 2.87 × 10−5 *** | 47.233 | 16.953 | 2.786 | 0.00534 ** |
Sector | −7.019 | 2.518 | −2.788 | 0.00531 ** | −4.921 | 23.975 | −0.205 | 0.83736 | |
Oxystomina | Intercept | 0.1129 | 1.1060 | 0.102 | 0.9187 | 0.2204 | 1.5063 | 0.146 | 0.88369 |
Sector | 4.0741 | 1.5879 | 2.566 | 0.0103 * | 6.1704 | 2.1302 | 2.897 | 0.00377 ** | |
Pseudochromadora | Intercept | 6.665 | 9.743 | 0.684 | 0.4939 | 3.820 | 8.148 | 0.469 | 0.639 |
Sector | 24.040 | 14.066 | 1.709 | 0.0874 | 16.381 | 11.523 | 1.422 | 0.155 | |
Paralinhomoeus | Intercept | 0.5877 | 7.1725 | 0.082 | 0.9349 | 11.973 | 7.935 | 1.509 | 0.131 |
Sector | 18.4377 | 10.1435 | 1.818 | 0.0735 | −1.910 | 11.222 | −0.170 | 0.865 | |
Sabatieria | Intercept | 11.405 | 9.507 | 1.200 | 0.230 | 1.249 | 5.567 | 0.224 | 0.823 |
Sector | 18.198 | 13.939 | 1.306 | 0.192 | 10.284 | 7.873 | 1.306 | 0.191 | |
Theristus | Intercept | - | - | - | - | 8.301 | 10.867 | 0.764 | 0.445 |
Sector | - | - | - | - | 23.580 | 15.368 | 1.534 | 0.125 | |
Terschellingia | Intercept | 0.5345 | 10.7780 | 0.05 | 0.960 | 0.1469 | 5.7743 | 0.025 | 0.980 |
Sector | 25.9834 | 15.8434 | 1.64 | 0.101 | 12.9284 | 8.1662 | 1.583 | 0.113 | |
Viscosia | Intercept | 2.42520 | 1.54081 | 1.574 | 0.115 | 39.520 | 19.451 | 2.032 | 0.0422 * |
Sector | 0.07233 | 2.24429 | 0.032 | 0.974 | 7.125 | 27.507 | 0.259 | 0.7956 | |
Total abundance | Intercept | 59.52 | 37.57 | 1.584 | 0.113 | 121.42 | 41.52 | 2.924 | 0.00345 ** |
Sector | 119.57 | 55.10 | 2.170 | 0.030 * | 84.48 | 58.72 | 1.438 | 0.15029 | |
Richness | Intercept | 7.2090 | 0.8050 | 8.955 | <2 × 10−16 *** | 7.2222 | 0.9207 | 7.844 | 4.36 × 10−15 *** |
Sector | 0.2355 | 1.1610 | 0.203 | 0.839 | 2.1111 | 1.3021 | 1.621 | 0.105 | |
MI | Intercept | 2.74843 | 0.05854 | 46.95 | <2 × 10−16 *** | 2.42332 | 0.08976 | 26.999 | <2 × 10−16 *** |
Sector | 0.09707 | 0.08279 | 1.17 | 0.241 | 0.32539 | 0.12694 | 2.563 | 0.0104 * | |
ITD | Intercept | 0.37083 | 0.02621 | 14.149 | <2 × 10−16 *** | 0.50440 | 0.03082 | 16.364 | <2 × 10−16 *** |
Sector | 0.01264 | 0.03787 | 0.334 | 0.739 | −0.08595 | 0.04359 | −1.972 | 0.0486 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandratavicius, N.; Giménez, L.; de Ward, C.P.; Venturini, N.; Muniz, P. Linking Biodiversity and Functional Patterns of Estuarine Free-Living Nematodes with Sedimentary Organic Matter Lability in an Atlantic Coastal Lagoon (Uruguay, South America). Diversity 2024, 16, 688. https://doi.org/10.3390/d16110688
Kandratavicius N, Giménez L, de Ward CP, Venturini N, Muniz P. Linking Biodiversity and Functional Patterns of Estuarine Free-Living Nematodes with Sedimentary Organic Matter Lability in an Atlantic Coastal Lagoon (Uruguay, South America). Diversity. 2024; 16(11):688. https://doi.org/10.3390/d16110688
Chicago/Turabian StyleKandratavicius, Noelia, Luis Giménez, Catalina Pastor de Ward, Natalia Venturini, and Pablo Muniz. 2024. "Linking Biodiversity and Functional Patterns of Estuarine Free-Living Nematodes with Sedimentary Organic Matter Lability in an Atlantic Coastal Lagoon (Uruguay, South America)" Diversity 16, no. 11: 688. https://doi.org/10.3390/d16110688
APA StyleKandratavicius, N., Giménez, L., de Ward, C. P., Venturini, N., & Muniz, P. (2024). Linking Biodiversity and Functional Patterns of Estuarine Free-Living Nematodes with Sedimentary Organic Matter Lability in an Atlantic Coastal Lagoon (Uruguay, South America). Diversity, 16(11), 688. https://doi.org/10.3390/d16110688