Traditional Use, Chemical Constituents, and Pharmacological Activity of Maytenus elaeodendroides Stem Bark
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Plant Material
2.3. Extraction and Isolation
2.4. Structure Elucidation Procedures
2.5. Flow Injection Analysis (FIA-ESI-IT-MSn)
2.6. Assay of 2,2-Diphenyl-2-picrylhydrazyl (DPPH) Scavenging Activity
2.7. Ferric Reducing Antioxidant Power (FRAP) Assay
2.8. Statistical Analysis
2.9. Anti-Inflammatory Assay
2.9.1. Animals
2.9.2. Experimental
3. Results and Discussion
3.1. Isolation and Structure Elucidation of Major Compounds of EtOAc Extract
3.2. FIA/ESI/IT/MSn Analysis
3.3. Antioxidant and Anti-Inflammatory Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sen, T.; Samanta, S.K. Medicinal plants, human health and biodiversity: A broad review. Adv. Biochem. Eng. Biotechnol. 2015, 147, 59–110. [Google Scholar]
- Ardalani, H.; Hadipanah, A.; Sahebkar, A. Medicinal plants in the treatment of peptic ulcer disease: A review. Mini Rev. Med. Chem. 2020, 20, 662–702. [Google Scholar] [CrossRef]
- Veloso, C.C.; Soares, G.L.; Perez, A.C.; Rodrigues, V.G.; Silva, F.C. Pharmacological potential of Maytenus species and isolated constituents, especially tingenone, for treatment of painful inflammatory diseases. Rev. Bras. Farmacogn. 2017, 27, 533–540. [Google Scholar] [CrossRef]
- Spivey, A.C.; Weston, M.; Woodhead, S. Celastraceae sesquiterpenoids: Biological activity and synthesis. Chem. Soc. Rev. 2002, 31, 43–59. [Google Scholar] [CrossRef]
- Gonazález, A.G.; Bazzocchi, I.L.; Moujir, L.-M.; Jiménez, I.A. Studies in Natural Chemistry, Bioactive Natural Products (Part D); Rahman, A.-U., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2000; pp. 23–649. [Google Scholar]
- Sosa, S.; Morelli, C.F.; Tubaro, A.; Cairoli, P.; Speranza, G.; Manitto, P. Anti-inflammatory activity of Maytenus senegalensis root extracts and of maytenoic acid. Phytomedicine 2007, 14, 109–114. [Google Scholar] [CrossRef]
- Mokoka, T.A.; McGaw, L.J.; Mdee, L.K.; Bagla, V.P.; Iwalewa, E.O.; Eloff, J.N. Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of Maytenus undata (Celastraceae). BMC Complement. Altern. Med. 2013, 13, 111. [Google Scholar] [CrossRef]
- De Vargas, F.S.; Almeida, P.D.; de Boleti, A.P.A.; Pereira, M.M.; de Souza, T.P.; de Vasconcellos, M.C.; Nunez, C.V.; Pohlit, A.M.; Lima, E.S. Antioxidant activity and peroxidase inhibition of Amazonian plants extracts traditionally used as anti-inflammatory. BMC Complement. Altern. Med. 2016, 16, 83. [Google Scholar] [CrossRef]
- Guan, P.; Wang, X.; Jiang, Y.; Dou, N.; Qu, X.; Liu, J.; Lin, B.; Han, L.; Huang, X.; Jiang, C. The anti-inflammatory effects of jiangrines from Jiangella alba through inhibition of p38 and NF-κB signaling pathways. Bioorg. Chem. 2020, 95, 103507. [Google Scholar] [CrossRef]
- Malaník, M.; Treml, J.; Rjašková, V.; Tížková, K.; Kaucká, P.; Kokoška, L.; Kubatka, P.; Šmejkal, K. Maytenus macrocarpa (Ruiz & Pav.) Briq.: Phytochemistry and Pharmacological Activity. Molecules 2019, 24, 2288. [Google Scholar] [CrossRef]
- Vilegas, W.; Sanommiya, M.; Rastrelli, L.; Pizza, C. Isolation and structure elucidation of two new flavonoid glycosides from the infusion of Maytenus aquifolium leaves. Evaluation of the antiulcer activity of the infusion. J. Agric. Food Chem. 1999, 47, 403–406. [Google Scholar] [CrossRef]
- Leite, J.P.V.; Rastrelli, L.; Romussi, G.; Oliveira, A.B.; Vilegas, J.H.; Vilegas, W.; Pizza, C. Isolation and HPLC quantitative analysis of flavonoid glycosides from Brazilian beverages (Maytenus ilicifolia and M. aquifolium). J. Agric. Food Chem. 2001, 49, 3796–3801. [Google Scholar] [CrossRef]
- Bittar, V.P.; Borges, A.L.S.; Justino, A.B.; Carrillo, M.S.P.; Duarte, R.F.M.; Silva, N.B.S.; Gonçalves, D.S.; Prado, D.G.; Araújo, I.A.C.; Martins, M.M.; et al. Bioactive compounds from the leaves of Maytenus ilicifolia Mart. ex Reissek: Inhibition of LDL oxidation, glycation, lipid peroxidation, target enzymes, and microbial growth. J. Ethnopharm. 2024, 319, 117315. [Google Scholar] [CrossRef]
- Okoye FB, C.; Debbab, A.; Wray, V.; Esimone, C.O.; Osadebe, P.O.; Proksch, P. A phenyldilactone, bisnorsesquiterpene, and cytotoxic phenolics from Maytenus senegalensis leaves. Tetrahedron Lett. 2014, 55, 3756–3760. [Google Scholar] [CrossRef]
- Pino, L.L.; García, T.H.; Delgado-Roche, L.; Rodeiro, I.; Hernández, I.; Vilegas, W.; Spengler, I. Polyphenolic profile by FIA/ESI/IT/MSn and antioxidant capacity of the ethanolic extract from the barks of Maytenus cajalbanica (Borhidi & O. Muñiz) Borhidi & O. Muñiz. Nat. Prod. Res. 2020, 34, 1481–1485. [Google Scholar]
- Spengler, I.; Nogueiras, C.; Gutierrez Ravelo, A.; Jimenez, I.A.; Romeu, A.R. Triterpenos de la corteza del tallo del Maytenus elaeodendroides (Griseb). Afinidad 2002, 59, 237–241. [Google Scholar]
- Spengler, I.; Nogueiras, C.; Gutiérrez, A.; Jiménez, I. Isolation and characterization of 1,3-keto friedelanes from Maytenus elaeodendroides. Rev. Latinoam Quim. 2004, 32, 51–55. [Google Scholar]
- García, E.E.; Capote, R.P.; Herrera, P.; Surlí, M. La vegetación del Sur de Isla de la Juventud. Rev. Jard. Bot. Nac. 1985, 6, 79–94. [Google Scholar]
- Fernández-Bobey, A.; Hernández-Torriente, A.; García-Pérez, T.H.; Spengler-Salabarría, I. Triterpenes with anti-inflammatory activity isolated from the bark of the endemic species Maytenus elaeodendroides, Griseb. Rev. Cuba. Quím. 2020, 32, 61–73. [Google Scholar]
- Reyes, C.P.; Núñez, M.J.; Jiménez, I.A.; Busserolles, J.; Alcaraz, M.J.; Bazzocchi, I.L. Activity of lupane triterpenoids from Maytenus species as inhibitors of nitric oxide and prostaglandin E2. Bioorg. Med. Chem. 2006, 14, 1573–1579. [Google Scholar] [CrossRef]
- Caruso, F.; Rossi, M.; Eberhardt, E.; Berinato, M.; Sakib, R.; Surco-Laos, F.; Chavez, H. I Superoxide Scavenging and Anti-Inflammatory Caspase-1 Inhibition Study Using Cyclic Voltammetry and Computational Docking Techniques. Int. J. Mol. Sci. 2023, 24, 10750. [Google Scholar] [CrossRef]
- De Aguilar, M.G.; Veríssimo Morais Quintão, S.; Camargo, K.C.; Pains Duarte, L.; Vasconcelos, L.R.; de Magalhães, J.C.; de Sousa, G.F. Flavonoids and Triterpenoids Isolated From the Ethyl Acetate Extract of M. quadrangulata Leaves. Chem. Biodivers. 2024, 21, e202400636. [Google Scholar] [CrossRef]
- De Fátima Nunes, D.A.; Lopes, G.F.M.; da Cruz Nizer, W.S.; de Aguilar, M.G.; da Silva Santos, F.R.; de Sousa, G.F.; Ferraz, A.C.; Duarte, L.P.; Brandão, G.C.; Vieira-Filho, S.A.; et al. Virucidal antiviral activity of Maytenus quadrangulata extract against Mayaro virus: Evidence for the presence of catechins. J. Ethnopharmacol. 2024, 311, 116436. [Google Scholar] [CrossRef]
- Yamauchi, M.; Kitamura, Y.; Nagano, H.; Kawatsu, J.; Gotoh, H. DPPHmeasurements and structure—Activity relationship studies on the antioxidant capacity of phenols. Antioxidants 2024, 13, 309. [Google Scholar] [CrossRef]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef]
- Prado, V.C.; Moenke, K.; Osmari, B.F.; Pegoraro, N.S.; Oliveira, S.M.; Cruz, L. Development of guar gum hydrogel containing sesamol-loaded nanocapsules designed for irritant contact dermatitis treatment induced by croton oil application. Pharmaceutics 2023, 15, 285. [Google Scholar] [CrossRef]
- Schmidt, C.A.; Murillo, R.; Bruhn, T.; Bringmann, G.; Goettert, M.; Heinzmann, B.; Brecht, V.; Laufer, S.A.; Merfort, I. Catechin derivatives from Parapiptadenia rigida with in vitro wound-healing properties. J. Nat. Prod. 2010, 73, 2035–2041. [Google Scholar] [CrossRef]
- Weeratunga, G.; Bohlin, L.; Verpoorte, R.; Kumar, V. Flavonoids from Elaeodendron balae root bark. Phytochemistry 1985, 24, 2093–2095. [Google Scholar] [CrossRef]
- Garcia, J.; Massoma, T.; Morin, C.; Mpondo, T.N.; Nyassé, B. 4′-O-methylgallocatechin from Panda oleosa. Phytochemistry 1993, 32, 1626–1628. [Google Scholar] [CrossRef]
- Zocoler, A.M.D.; Sanches, A.C.C.; Albrecht, I.; de Mello, J.C.P. Antioxidant capacity of extracts and isolated compounds from Stryphnodendron obovatum Benth. Brazilian J. Pharm. Sci. 2009, 45, 443–452. [Google Scholar] [CrossRef]
- He, X.; Yang, F.; Huang, X.A. Proceedings of chemistry, pharmacology, pharmacokinetics and synthesis of biflavonoids. Molecules 2021, 26, 6088. [Google Scholar] [CrossRef]
- Delle Monache, F.; Marini-Bettòlo, G.B.; Pomponi, M.; de Méllo, J.F.; King, T.J.; Thomson, R.H. Molecular and crystal structure of prionostemmadione, a new dioxofriedelane from Prionostemma aspera. J. Chem. Soc. Perkin Trans. 1979, 1, 2649–2651. [Google Scholar] [CrossRef]
- Maregesi, S.M.; Hermans, N.; Dhooghe, L.; Cimanga, K.; Ferreira, D.; Pannecouque, C.; Berghe, D.A.V.; Cos, P.; Maes, L.; Vlietinck, A.J.; et al. Phytochemical and biological investigations of Elaeodendron schlechteranum. J. Ethnopharmacol. 2010, 129, 319–326. [Google Scholar] [CrossRef]
- Li, H.; Deinzer, M.L. Tandem mass spectrometry for sequencing proanthocyanidins. Anal. Chem. 2007, 79, 1739–1748. [Google Scholar] [CrossRef]
- Rodrigues, C.M.; Rinaldo, D.; dos Santos, L.C.; Montoro, P.; Piacente, S.; Pizza, C.; Hiruma-Lima, C.A.; Brito, A.R.M.S.; Vilegas, W. Metabolic fingerprinting using direct flow injection electrospray ionization tandem mass spectrometry for the characterization of proanthocyanidins from the barks of Hancornia speciosa. Rapid Commun. Mass Spectrom. 2007, 21, 1907–1914. [Google Scholar] [CrossRef]
- Oirdi, E. MHarnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals 2024, 17, 692. [Google Scholar] [CrossRef]
- Shah, M.A.; Faheem, H.I.; Hamid, A.; Yousaf, R.; Haris, M.; Saleem, U.; Shah, G.M.; Alhasani, R.H.; Althobaiti, N.A.; Alsharif, I.; et al. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med. Res. Rev. 2024, 44, 235–274. [Google Scholar] [CrossRef]
- Islam, T.; Albracht-Schulte, K.; Ramalingam, L.; Schlabritz-Lutsevich, N.; Park, O.H.; Zabet-Moghaddam, M.; Kalupahana, N.S.; Moustaid-Moussa, N. Anti-inflammatory mechanisms of polyphenols in adipose tissue: Role of gut microbiota, intestinal barrier integrity and zinc homeostasis. J. Nutr. Biochem. 2023, 115, 109242. [Google Scholar] [CrossRef]
- Xiao, L.; Sun, Y.; Tsao, R. Paradigm Shift in Phytochemicals Research: Evolution from Antioxidant Capacity to Anti-Inflammatory Effect and to Roles in Gut Health and Metabolic Syndrome. J. Agric. Food Chem. 2022, 70, 8551–8568. [Google Scholar] [CrossRef]
- Sirivibulkovit, K.; Nouanthavong, S.; Sameenoi, Y. Based DPPH assay for antioxidant activity analysis. Anal. Sci. 2018, 34, 795–800. [Google Scholar] [CrossRef]
- Dehpour, A.A.; Ebrahimzadeh, M.A.; Fazel, N.S.; Mohammad, N.S. Antioxidant activity of methanol extract of Ferula assafoetida and its essential oil composition. Oils Fats. Grasas Aceites 2009, 60, 405–412. [Google Scholar]
- Chai, W.; Wu, Y.; Li, X.; Zeng, S.; Cheng, Y.; Jiang, W.; Pan, Q.; Xia, X.; Chen, G. Relationships between degree of polymerization and activities: A study on condensed tannins from the bark of Ficus altissima. Int. J. Biol. Macromol. 2024, 274, 133306. [Google Scholar] [CrossRef] [PubMed]
- Spranger, I.; Sun, B.S.; Mateus, A.M.; de Freitas, V.; Ricardo-da-Silva, J.M. Chemical characterization and antioxidant activities of oligomeric andpolymeric procyanidin fractions from grape seeds. Food Chem. 2008, 108, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The interplay between cytokines, inflammation, and antioxidants: Mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef]
- Bouknana, S.; Rherabi, A.E.; Abdnim, R.; Berraaouan, A.; Bnouham, M. Medicinal Plants and Bioactive Compounds with Potential Anti-inflammatory and Antidiabetic Activities: A Review. Lett. Drug Des. Discov. 2024, 21, 1985–2007. [Google Scholar] [CrossRef]
- Martínez-Rizo, A.B.; Fosado-Rodríguez, R.; Torres-Romero, J.C.; Lara-Riegos, J.C.; Ramírez-Camacho, M.A.; Herrera, A.L.A.; de la Torre, F.E.V.; Góngora, E.C.; Arana-Argáez, V.E. Models in vivo and in vitro for the study of acute and chronic inflammatory activity: A comprehensive review. Int. Immunopharmacol. 2024, 135, 112292. [Google Scholar] [CrossRef]
- Yang, D.J.; Liu, S.C.; Chen, Y.C.; Hsu, S.H.; Chang, Y.P.; Lin, J.T. Three Pathways Assess Anti-Inflammatory Response of Epicatechin with Lipopolysaccharide-Mediated Macrophage RAW264.7 Cells. J. Food Biochem. 2015, 39, 334–343. [Google Scholar] [CrossRef]
- Manoharan, R.R.; Prasad, A.; Pospíšil, P.; Kzhyshkowska, J. ROS signaling in innate immunity via oxidative protein modifications. Front. Immunol. 2024, 15, 1359600. [Google Scholar] [CrossRef]
[M-H]− m/z | MS2 Main Fragments | Proposed Names |
---|---|---|
Monomers | ||
289 | 271, 137 | (E)C |
305 | 287, 137 | (E)GC |
319 | 301, 137 | 4-methyl-(E)GC (3) |
335 | 317, 137 | 2′-hydroxy-4′-methyl-(E)GC (1) |
359 | 341, 137 | Elaeocyanidin (2) |
Dimers | ||
561 | 527, 425, 419, 407, 271, 289 | (E)AZ-(E)C |
577 | 559, 451, 425, 407, 289, 287 | (E)C-(E)C |
591 | 573, 465, 455, 437, 271, 319 | (E)AZ-4´-methyl-(E)GC (4) |
593 | 575, 467, 441, 423, 287, 305 | (E)C-(E)GC |
Trimers | ||
863 | 845, 737, 591, 271 | (E)AZ-(E)AZ-4´-methyl-(E)GC |
865 | 739, 713, 695, 577, 425 | (E)C-(E)C-(E)C |
913 | 787, 609, 607, 305, 303 | (E)GC-(E)GC-(E)GC |
Tetramer | ||
1137 | 863, 849, 575, 561, | (E)C-(E)C-(E)C-(E)AZ |
Extracts | FRAP (mM of Ascorbic Acid Equivalents Per Gram of Extract) | DPPH IC50 (mg/mL) (% Maximal Inhibition) |
---|---|---|
ME-1 | 3156 ± 753 a | 6.23 a ± 1.5 (76) |
ME-2 | 2983 ± 675 a | 18.71 b ± 4.3 (71) |
ME-3 | 2865 ± 666 a | 10.44 b ± 3.5 (68) |
ME-4 | 2434 ± 537 b | 137.7 c ± 6.1 (62) |
α Tocopherol | - | 38.04 d ± 1.2 (77) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, T.H.; Spengler, I.; Fernández, A.; Rodeiro, I.; Hernández-Balmaseda, I.; Céspedes, I.; Garrido, G.; dos Santos, L.C.; Vilegas, W.; Celano, R.; et al. Traditional Use, Chemical Constituents, and Pharmacological Activity of Maytenus elaeodendroides Stem Bark. Diversity 2024, 16, 694. https://doi.org/10.3390/d16110694
García TH, Spengler I, Fernández A, Rodeiro I, Hernández-Balmaseda I, Céspedes I, Garrido G, dos Santos LC, Vilegas W, Celano R, et al. Traditional Use, Chemical Constituents, and Pharmacological Activity of Maytenus elaeodendroides Stem Bark. Diversity. 2024; 16(11):694. https://doi.org/10.3390/d16110694
Chicago/Turabian StyleGarcía, Trina H., Iraida Spengler, Antonio Fernández, Idania Rodeiro, Ivones Hernández-Balmaseda, Ilianet Céspedes, Gabino Garrido, Lourdes Campaner dos Santos, Wagner Vilegas, Rita Celano, and et al. 2024. "Traditional Use, Chemical Constituents, and Pharmacological Activity of Maytenus elaeodendroides Stem Bark" Diversity 16, no. 11: 694. https://doi.org/10.3390/d16110694
APA StyleGarcía, T. H., Spengler, I., Fernández, A., Rodeiro, I., Hernández-Balmaseda, I., Céspedes, I., Garrido, G., dos Santos, L. C., Vilegas, W., Celano, R., & D’Elia, M. (2024). Traditional Use, Chemical Constituents, and Pharmacological Activity of Maytenus elaeodendroides Stem Bark. Diversity, 16(11), 694. https://doi.org/10.3390/d16110694