Bryophyte Flora in Alpine Grasslands of the Qinghai–Tibet Plateau Based on Plot Sampling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Sampling
2.3. Data Analysis
3. Results
3.1. Species Composition and Dominant Species in Alpine Grasslands
3.2. Comparing Species Composition between AM and AS
3.3. Bryophyte Life-Forms
3.4. Endemism
4. Discussion
4.1. Sampling Methods for Estimating Biodiversity
4.2. Bryophyte Composition of Alpine Grasslands on the QTP
4.3. Bryophyte Life-Forms and Indications for Climate Change
4.4. Endemism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanderpoorten, A.; Goffinet, B. Introduction to Bryophytes; Cambridge University Press: Cambridge, NY, USA, 2009. [Google Scholar]
- Ochyra, R.; Smith, R.I.L.; Bednarek-Ochyra, H. The Illustrated Moss Flora of Antarctica; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Proctor, M.C.F.; Oliver, M.J.; Wood, A.J.; Alpert, P.; Stark, L.R.; Cleavitt, N.L.; Mishler, B.D. Desiccation-tolerance in bryophytes: A review. Bryologist 2007, 110, 595–621. [Google Scholar] [CrossRef]
- Perera-Castro, A.V.; Waterman, M.J.; Turnbull, J.D.; Ashcroft, M.B.; McKinley, E.; Watling, J.R.; Bramley-Alves, J.; Casanova-Katny, A.; Zuniga, G.; Flexas, J.; et al. It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Front. Plant Sci. 2020, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Zhao, Y.; Gao, L.; Yang, Q.; Yang, K. Moss-dominated biocrusts improve the structural diversity of underlying soil microbial communities by increasing soil stability and fertility in the Loess Plateau region of China. Eur. J. Soil Biol. 2019, 95, 103120. [Google Scholar] [CrossRef]
- Li, S.; Xiao, B.; Sun, F.; Kidron, G.J. Moss-dominated biocrusts enhance water vapor sorption capacity of surface soil and increase non-rainfall water deposition in drylands. Geoderma 2021, 388, 114930. [Google Scholar] [CrossRef]
- Bu, C.; Zhao, Y.; Hill, R.L.; Zhao, C.; Yang, Y.; Zhang, P.; Wu, S. Wind erosion prevention characteristics and key influencing factors of bryophytic soil crusts. Plant Soil 2015, 397, 163–174. [Google Scholar] [CrossRef]
- Porada, P.; Ekici, A.; Beer, C. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. Cryosphere 2016, 10, 2291–2315. [Google Scholar] [CrossRef]
- Ni, J.; Herzschuh, U. Simulating biome distribution on the Tibetan Plateau using a modified global vegetation model. Arct. Antarct. Alp. Res. 2011, 43, 429–441. [Google Scholar] [CrossRef]
- Dong, S.; Sherman, R. Enhancing the resilience of coupled human and natural systems of alpine rangelands on the Qinghai-Tibetan Plateau. Rangel. J. 2015, 37, i–iii. [Google Scholar] [CrossRef]
- Dong, S. Revitalizing the grassland on the Qinghai–Tibetan Plateau. Grassl. Res. 2023, 2, 241–250. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- Song, S.; Liu, X.; Bai, X.; Jiang, Y.; Zhang, X.; Yu, C.; Shao, X. Impacts of environmental heterogeneity on moss diversity and distribution of Didymodon (Pottiaceae) in Tibet, China. PLoS ONE 2015, 10, e0132346. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.; Feng, C.; Yu, C.Q.; Shao, X.-M. Bryoerythrophyllum pseudomarginatum (Pottiaceae), a new species from Tibet, China. Ann. Bot. Fennici 2016, 53, 31–35. [Google Scholar] [CrossRef]
- Kou, J.; Feng, C.; Shao, X.-M. Didymodon jimenezii (Pottiaceae), a new species from Tibet, China. Bryologist 2016, 119, 243–249. [Google Scholar] [CrossRef]
- Kou, J.; Feng, C.; Jiang, Y.B.; Shao, X.-M. Didymodon mesopapillosus sp. nov. (Pottiaceae) from Tibet, China. Nord. J. Bot. 2017, 35, 107–110. [Google Scholar] [CrossRef]
- Kou, J.; Feng, C.; Shao, X.-M. Didymodon tibeticus (Bryophyta, Pottiaceace) a new species from Tibet, China. Nova Hedwig. 2018, 106, 78–80. [Google Scholar] [CrossRef]
- Kou, J.; Feng, C.; Niu, B.; Xiao, H.-X. Encalypta papillosa C. Feng, J. Kou & B. Niu (Encalyptaceae, Musci), a new species from Tibet, China. J. Bryol. 2020, 42, 326–332. [Google Scholar]
- Zhu, R.; Ma, X.; Cao, C.; Cao, Z. Advances in research on bryophyte diversity in China. Biodivers. Sci. 2022, 30, 22378. [Google Scholar] [CrossRef]
- Chase, J.M.; McGill, B.J.; McGlinn, D.J.; May, F.; Blowes, S.A.; Xiao, X.; Knight, T.M.; Purschke, O.; Gotelli, N.J.; Knight, T.M.; et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 2018, 21, 1737–1751. [Google Scholar] [CrossRef]
- Cheng, C.; He, N.; Li, M.; Xu, L.; Cai, W.; Li, X.; Zhao, W.; Li, C.; Sun, O.J. Plant species richness on the Tibetan Plateau: Patterns and determinants. Ecography 2023, 2023, e06265. [Google Scholar] [CrossRef]
- Zhang, X.S. Vegetation Map of the People’s Republic of China (1:1,000,000); Geology Press: Beijing, China, 2007. [Google Scholar]
- Chang, D.H.S. The Tibetan plateau in relation to the vegetation of China. Ann. Mo. Bot. Gard. 1983, 70, 564–570. [Google Scholar] [CrossRef]
- Miehe, G.; Schleuss, P.M.; Seeber, E.; Babel, W.; Biermann, T.; Braendle, M.; Chen, F.; Coners, H.; Foken, T.; Gerken, T.; et al. The Kobresia pygmaea ecosystem of the Tibetan highlands—Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem Kobresia pastures of Tibet. Sci. Total Environ. 2019, 648, 754–771. [Google Scholar] [CrossRef]
- Miller, D.J. The Tibetan Steppe. In Grasslands of the World; Suttie, J.M., Reynolds, S.G., Batello, C., Eds.; Food and Agriculture Organization: Rome, Italy, 2005; pp. 305–342. [Google Scholar]
- Miehe, G.; Bach, K.; Miehe, S.; Kluge, J.; Yang, Y.; Duo, L.; Co, S.; Wesche, K. Alpine steppe plant communities of the Tibetan highlands. Appl. Veg. Sci. 2011, 14, 547–560. [Google Scholar] [CrossRef]
- Bates, J.W. Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 1998, 82, 223–237. [Google Scholar] [CrossRef]
- Glime, J.M. Adaptive Strategies: Growth and Life Forms. In Bryophyte Ecology; Glime, J.M., Ed.; Ebook Sponsored by Michigan Technological University and the International Association of Bryologists: Houghton, MN, USA, 2017; Available online: http://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed on 10 December 2023).
- Jaccard, P. The distribution of the flora of the alpine zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Alba, C.; Levy, R.; Hufft, R. Combining botanical collections and ecological data to better describe plant community diversity. PLoS ONE 2021, 16, e0244982. [Google Scholar] [CrossRef]
- Bowering, R.; Wigle, R.; Padgett, T.; Adams, B.; Cote, D.; Wiersma, Y. Searching for rare species: A comparison of floristic habitat sampling and adaptive cluster sampling for detecting and estimating abundance. For. Ecol. Manag. 2018, 407, 1–8. [Google Scholar] [CrossRef]
- Newmaster, S.G.; Belland, R.J.; Arsenault, A.; Vitt, D.H.; Stephens, T. The ones we left behind: Comparing plot sampling and floristic habitat sampling for estimating bryophyte diversity. Divers. Distrib. 2005, 11, 57–72. [Google Scholar] [CrossRef]
- Chen, X.; Tu, S.W.; Dai, Z.; Gao, S.; Wang, Y.F.; Xing, S.C.; Wei, B.J.; Tang, L.Y.; Shi, R.P.; Wang, X.R.; et al. Bryophytes diversity of Tianmushan National Nature Reserve, Zhejiang Province. Biodivers. Sci. 2023, 31, 22649. [Google Scholar] [CrossRef]
- Ilić, M.; Igić, R.; Ćuk, M.; Vukov, D. Field sampling methods for investigating forest-floor bryophytes: Microcoenose vs. random sampling. Arch. Biol. Sci. 2018, 70, 589–598. [Google Scholar] [CrossRef]
- Palmer, M.W. The estimation of species richness by extrapolation. Ecology 1990, 71, 1195–1198. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Delgado-Baquerizo, M. The influence of climatic legacies on the distribution of dryland biocrust communities. Glob. Chang. Biol. 2018, 25, 327–336. [Google Scholar] [CrossRef]
- Hoellrich, M.R.; James, D.K.; Bustos, D.; Darrouzet-Nardi, A.; Santiago, L.S.; Pietrasiak, N. Biocrust carbon exchange varies with crust type and time on Chihuahuan Desert gypsum soils. Front. Microbiol. 2023, 14, 1128631. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Chen, J.; Wang, L.; Wang, X.Q.; Gu, Z.H. The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J. Arid Environ. 2007, 68, 599–610. [Google Scholar] [CrossRef]
- Proctor, M.C.F.; Nagy, Z.; Csintalan, Z.; Takács, Z. Water-content components in bryophytes: Analysis of pressure-volume relationships. J. Exp. Bot. 1998, 49, 1845–1854. [Google Scholar] [CrossRef]
- Jauregui-Lazo, J.; Wilson, M.; Mishler, B.D. The dynamics of external water conduction in the dryland moss Syntrichia. AoB Plants 2023, 15, plad025. [Google Scholar] [CrossRef] [PubMed]
- Pressel, S.; Duckett, J. Bryophyte surfaces; new functional perspectives from cryo-scanning electron microscopy. Field Bryol. 2011, 104, 50–53. [Google Scholar]
- Pan, Z.; Pitt, W.G.; Zhang, Y.; Wu, N.; Tao, Y.; Truscott, T.T. The upsidedown water collection system of Syntrichia caninervis. Nat. Plants 2016, 2, 16076. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, Y.M. Effects of leaf hair points of a desert moss on water retention and dew formation: Implications for desiccation tolerance. J. Plant Res. 2012, 125, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.J. The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. Bryologist 2007, 110, 163–177. [Google Scholar] [CrossRef]
- Coe, K.K.; Greenwood, J.L.; Slate, M.L.; Clark, T.A.; Brinda, J.C.; Fisher, K.M.; Mishler, B.D.; Bowker, M.A.; Oliver, M.J.; Ebrahimi, S.; et al. Strategies of desiccation tolerance vary across life phases in the moss Syntrichia caninervis. Am. J. Bot. 2020, 108, 249–262. [Google Scholar] [CrossRef]
- Wood, A.J.; Oliver, M.J. Translational control in plant stress: The formation of messenger ribonucleoprotein particles (mRNPs) in response to desiccation of Tortula ruralis gametophytes. Plant J. 1999, 18, 359–370. [Google Scholar] [CrossRef]
- Gao, B.; Li, X.; Zhang, D.; Liang, Y.; Yang, H.; Chen, M.; Zhang, Y.; Zhang, J.; Wood, A.J. Desiccation tolerance in bryophytes: The dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyte Bryum argenteum. Sci. Rep. 2017, 7, 7571. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Zhang, P. Micro-morphology, ultrastructure and chemical composition changes of Bryum argenteum from a desert biological soil crust following one-year desiccation. Bryologist 2014, 117, 232–240. [Google Scholar] [CrossRef]
- Kou, J.; Wang, T.; Yu, F.; Sun, Y.; Feng, C.; Shao, X. The moss genus Didymodon as an indicator of climate change on the Tibetan Plateau. Ecol. Indic. 2020, 113, 106204. [Google Scholar] [CrossRef]
- Fan, Z.; Bai, R.; Yue, T. Spatio-temporal distribution of vascular plant species abundance on Qinghai-Tibet Plateau. J. Geogr. Sci. 2019, 29, 1625–1636. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, X.; Tang, Z. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecol. Evol. 2013, 3, 4584–4595. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Wu, F.; Ding, L.; Sun, J.; Zhu, L.; Piao, S.; Deng, T.; Ni, X.; Zheng, H.; Ouyang, H. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Natl. Sci. Rev. 2015, 2, 468–488. [Google Scholar] [CrossRef]
- Wen, A.; Wu, T.; Zhu, X.; Li, R.; Wu, X.; Chen, J.; Qiao, Y.; Ni, J.; Ma, W.; Li, X.; et al. Changes in the spatial distribution of bryophytes on the Qinghai–Tibet Plateau under CMIP6 future projections. Environ. Earth Sci. 2022, 81, 15. [Google Scholar] [CrossRef]
- Spitale, D.; Mair, P.; Nascimbene, J. Patterns of bryophyte life-forms are predictable across land cover types. Ecol. Indic. 2020, 109, 105799. [Google Scholar] [CrossRef]
- Valente, E.D.; Pôrto, K.C.; Bastos, C.J.P. Habitat heterogeneity and diversity of bryophytes in campos rupestres. Acta Bot. Bras. 2017, 31, 241–249. [Google Scholar] [CrossRef]
- Vittoz, P.; Camenisch, M.; Mayor, R.; Miserere, L.; Vust, M.; Theurillat, J.P. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 2010, 120, 139–149. [Google Scholar] [CrossRef]
- Rice, S.K.; Schneider, N. Cushion size, surface roughness, and the control of water balance and carbon flux in the cushion moss Leucobryum glaucum (Leucobryaceae). Am. J. Bot. 2004, 91, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Zotz, G.; Schweikert, A.; Jetz, W.; Westerman, H. Water relations and carbon gain are closely related to cushion size in the moss Grimmia pulvinata. New Phytol. 2000, 148, 59–67. [Google Scholar] [CrossRef]
- Rice, S.K.; Aclander, L.; Hanson, D.T. Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am. J. Bot. 2008, 95, 1366–1374. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Pepin, N.C.; Chen, D.L.; Ahrens, B.; Jiang, Z.; Wu, F.; Kang, S.; Zhang, R.; Wu, T.; et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res.-Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Q.; Yu, M. Quantifying trends of land change in Qinghai-Tibet Plateau during 2001–2015. Remote Sens. 2019, 11, 2435. [Google Scholar] [CrossRef]
- Ganjurjav, H.; Gao, Q.; Gornish, E.S.; Schwartz, M.W.; Liang, Y.; Cao, X.; Zhang, W.; Zhang, Y.; Li, W.; Wan, Y.; et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agr. Forest Meteorol. 2016, 223, 233–240. [Google Scholar] [CrossRef]
- Gradstein, S.R.; Sporn, S.G. Land-use change and epiphytic bryophyte diversity in the Tropics. Nova Hedwig. 2010, 138, 311–323. [Google Scholar]
- Strazdiņa, L.; Brūmelis, G.; Rēriha, I. Life-form adaptations and substrate availability explain a 100-year post-grazing succession of bryophyte species in the Moricsala Strict Nature Reserve, Latvia. J. Bryol. 2013, 35, 33–46. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Ma, H.; Si, M.; Wang, B.; Chen, L.; Gao, Z.; Wu, Y. Study on bryophyte of floristic character of Chayu Cibagou Nature Reserve in Tibet. J. Gansu Agric. Univ. 2023. Available online: https://link.cnki.net/urlid/62.1055.S.20231206.1446.052 (accessed on 15 December 2023).
- Yu, H.; Deane, D.C.; Zhang, Y.; Li, S.; Miao, S.; Xie, G.; Yin, X.; Favre, A. Integrating multiple indices of geobiodiversity reveals a series of regional species-rich areas worthy of conservation in the region of the Qinghai-Tibet Plateau. Biol. Conserv. 2021, 261, 109238. [Google Scholar] [CrossRef]
- Huang, J.; Huang, J.; Liu, C.; Zhang, J.; Lu, X.; Ma, K. Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biol. Conserv. 2016, 198, 104–112. [Google Scholar] [CrossRef]
- Zhang, D.C.; Ye, J.X.; Sun, H. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J. Biogeogr. 2016, 43, 2465–2476. [Google Scholar] [CrossRef]
- Patiño, J.; Vanderpoorten, A. Bryophyte biogeography. Crit. Rev. Plant Sci. 2018, 37, 175–209. [Google Scholar] [CrossRef]
No. | Family | Species | Life-Forms | Cumulative Importance Value | Grassland Types |
---|---|---|---|---|---|
1 | Pottiaceae | Didymodon tectorus | Turf | 25.255 | AM, AS |
2 | Pottiaceae | Didymodon fallax | Turf | 13.323 | AM, AS |
3 | Bryaceae | Bryum caespiticium | Turf | 11.866 | AM, AS |
4 | Pottiaceae | Didymodon constrictus | Turf | 10.044 | AM, AS |
5 | Pottiaceae | Didymodon ditrichoides | Turf | 10.019 | AM, AS |
6 | Bryaceae | Bryum argenteum | Turf | 6.873 | AM, AS |
7 | Pottiaceae | Barbula gracilenta | Turf | 6.110 | AM, AS |
8 | Pottiaceae | Didymodon constrictus var. flexicuspis | Turf | 5.567 | AM, AS |
9 | Ditrichaceae | Distichium brevisetum | Turf | 4.806 | AM |
10 | Pottiaceae | Didymodon michiganensis | Turf | 4.336 | AM, AS |
11 | Bryaceae | Bryum lonchocaulon | Turf | 4.029 | AM, AS |
12 | Distichiaceae | Distichium capillaceum | Turf | 3.031 | AM, AS |
13 | Pottiaceae | Didymodon asperifolius | Turf | 2.972 | AM, AS |
14 | Pottiaceae | Vinealobryum vineale | Turf | 2.958 | AM, AS |
15 | Pottiaceae | Didymodon rivicola | Turf | 2.813 | AM, AS |
16 | Rhytidiaceae | Rhytidium rugosum | Weft | 2.799 | AM |
17 | Thuidiaceae | Abietinella abietina | Weft | 2.761 | AM |
18 | Thuidiaceae | Haplocladium angustifolium | Weft | 2.735 | AM |
19 | Bryaceae | Bryum algovicum | Turf | 2.613 | AM, AS |
20 | Entodontaceae | Entodon challengeri | Mat | 2.260 | AM |
21 | Pottiaceae | Didymodon tophaceus | Turf | 2.256 | AM, AS |
22 | Pottiaceae | Aloina rigida | Turf | 2.242 | AM, AS |
23 | Brachytheciaceae | Brachythecium moriense | Weft | 2.217 | AM |
24 | Brachytheciaceae | Brachythecium populeum | Weft | 2.063 | AM, AS |
25 | Pottiaceae | Didymodon nigrescens | Turf | 2.003 | AM, AS |
26 | Pottiaceae | Gymnostomum calcareum | Turf | 1.961 | AM, AS |
27 | Brachytheciaceae | Brachythecium pulchellum | Weft | 1.873 | AM, AS |
28 | Pottiaceae | Weissia longifolia | Turf | 1.823 | AM |
29 | Bryaceae | Bryum alpinum | Turf | 1.732 | AM, AS |
30 | Pottiaceae | Didymodon vinealis var. vinealis | Turf | 1.731 | AM, AS |
31 | Hypnaceae | Hypnum revolutum | Weft | 1.676 | AM |
32 | Brachytheciaceae | Brachythecium coreanum | Weft | 1.498 | AM |
33 | Pottiaceae | Barbula yunnanensis | Turf | 1.476 | AM, AS |
34 | Bryaceae | Bryum uliginosum | Turf | 1.396 | AM, AS |
35 | Pottiaceae | Barbula unguiculata | Turf | 1.340 | AM |
36 | Funariaceae | Funaria hygrometrica | Turf | 1.327 | AM, AS |
37 | Entodontaceae | Entodon concinnus | Mat | 1.293 | AM |
38 | Pottiaceae | Barbula indica | Turf | 1.189 | AM, AS |
39 | Pottiaceae | Tortella tortuosa | Turf | 1.072 | AM |
40 | Bryaceae | Bryum pallescens | Turf | 1.017 | AM, AS |
41 | Mniaceae | Pohlia elongata | Turf | 1.017 | AM |
42 | Pottiaceae | Bryoerythrophyllum gymnostomum | Turf | 1.016 | AM |
43 | Bryaceae | Bryum paradoxum | Turf | 0.968 | AM |
44 | Pottiaceae | Weissia controversa | Turf | 0.904 | AM |
45 | Pottiaceae | Trichostomum crispulum | Turf | 0.851 | AM, AS |
46 | Thuidiaceae | Thuidium delicatulum | Weft | 0.794 | AM |
47 | Pottiaceae | Gymnostomum laxirete | Turf | 0.786 | AM, AS |
48 | Bryaceae | Anomobryum auratum | Turf | 0.775 | AM, AS |
49 | Bryaceae | Bryum cellulare | Turf | 0.768 | AM, AS |
50 | Pottiaceae | Syntrichia sinensis | Turf | 0.764 | AM |
51 | Polytrichaceae | Pogonatum perichaetiale | Turf | 0.734 | AS |
52 | Bryaceae | Bryum sauteri | Turf | 0.711 | AM |
53 | Bryaceae | Bryum pseudotriquetrum | Turf | 0.688 | AM |
54 | Bryaceae | Bryum arcticum | Turf | 0.671 | AM, AS |
55 | Pottiaceae | Tortella fragilis | Turf | 0.662 | AM |
56 | Pottiaceae | Bryoerythrophyllum brachystegium | Turf | 0.646 | AM |
57 | Pottiaceae | Gymnostomum calcareum | Turf | 0.639 | AM, AS |
58 | Bryaceae | Bryum dichotomum | Turf | 0.623 | AM |
59 | Leucobryaceae | Campylopus umbellatus | Turf | 0.605 | AM |
60 | Ditrichaceae | Distichium inclinatum | Turf | 0.589 | AM |
61 | Pottiaceae | Hymenostylium recurvirostrum | Turf | 0.585 | AM |
62 | Hypnaceae | Hypnum cupressiforme | Weft | 0.583 | AM |
63 | Entodontaceae | Entodon cladorrhizans | Mat | 0.573 | AM |
64 | Bartramiaceae | Philonotis thwaitesii | Turf | 0.547 | AM |
65 | Hypnaceae | Hypnum plumaeforme | Weft | 0.538 | AM |
66 | Encalyptaceae | Encalypta rhaptocarpa | Turf | 0.533 | AM |
67 | Encalyptaceae | Encalypta spathulata | Turf | 0.521 | AM |
68 | Pottiaceae | Syntrichia ruralis | Turf | 0.508 | AM |
69 | Pottiaceae | Barbula pseudo-ehrenbergii | Turf | 0.497 | AM |
70 | Bartramiaceae | Philonotis turneriana | Turf | 0.474 | AM, AS |
71 | Pottiaceae | Hymenostylium recurvirostrum var. insigne | Turf | 0.459 | AM |
72 | Distichiaceae | Distichium bryoxiphioidium | Turf | 0.450 | AM |
73 | Funariaceae | Funaria discelioides | Turf | 0.443 | AM, AS |
74 | Pottiaceae | Weissia longifolia | Turf | 0.442 | AM, AS |
75 | Brachytheciaceae | Brachythecium garovaglioides | Weft | 0.434 | AM |
76 | Pottiaceae | Didymodon ferrugineus | Turf | 0.429 | AS |
77 | Pylaisiadelphaceae | Isopterygium albescens | Weft | 0.415 | AM |
78 | Pottiaceae | Trichostomum tenuirostre | Turf | 0.404 | AM |
79 | Brachytheciaceae | Brachythecium plumosum | Weft | 0.399 | AM |
80 | Dicranaceae | Dicranum fragilifolium | Turf | 0.398 | AM |
81 | Bryaceae | Bryum capillare | Turf | 0.397 | AM |
82 | Mniaceae | Rhizomnium gracile | Turf | 0.395 | AS |
83 | Bryaceae | Bryum blindii | Turf | 0.386 | AS |
84 | Brachytheciaceae | Brachythecium reflexum | Weft | 0.378 | AM |
85 | Dicranellaceae | Dicranella divaricatula | Turf | 0.375 | AM |
86 | Brachytheciaceae | Brachythecium buchananii | Weft | 0.368 | AM |
87 | Fissidentaceae | Fissidens curvatus | Turf | 0.362 | AM, AS |
88 | Pottiaceae | Syntrichia princeps | Turf | 0.355 | AM, AS |
89 | Grimmiaceae | Grimmia montana | Cushion | 0.353 | AM, AS |
90 | Thuidiaceae | Haplocladium microphyllum | Weft | 0.339 | AM |
91 | Bryaceae | Bryum turbinatum | Turf | 0.318 | AM, AS |
92 | Oncophoraceae | Oncophorus virens | Turf | 0.311 | AM |
93 | Dicranaceae | Dicranum scoparium | Turf | 0.307 | AM |
94 | Pottiaceae | Bryoerythrophyllum recurvirostrum | Turf | 0.301 | AM, AS |
95 | Funariaceae | Physcomitrium coorgense | Turf | 0.300 | AM |
96 | Brachytheciaceae | Cirriphyllum cirrosum | Weft | 0.299 | AM |
97 | Thuidiaceae | Thuidium pristocalyx | Weft | 0.292 | AM |
98 | Bartramiaceae | Philonotis calomicra | Turf | 0.286 | AM |
99 | Encalyptaceae | Encalypta ciliata | Turf | 0.274 | AM |
100 | Dicranaceae | Paraleucobryum schwarzii | Turf | 0.257 | AM |
101 | Mniaceae | Pohlia timmioides | Turf | 0.254 | AM |
102 | Pottiaceae | Timmiella anomala | Turf | 0.253 | AM |
103 | Bryaceae | Bryum radiculosum | Turf | 0.252 | AM |
104 | Pottiaceae | Bryoerythrophyllum yunnanense | Turf | 0.250 | AM |
105 | Pottiaceae | Tortula leucostoma | Turf | 0.241 | AM |
106 | Pottiaceae | Barbula subcomosa | Turf | 0.217 | AM |
107 | Pottiaceae | Didymodon perobtusus | Turf | 0.216 | AM |
108 | Orthotrichaceae | Orthotrichum anomalum | Cushion | 0.201 | AM |
109 | Pottiaceae | Didymodon rufidulus | Turf | 0.201 | AS |
110 | Grimmiaceae | Grimmia pilifera | Cushion | 0.194 | AM |
111 | Mniaceae | Plagiomnium arbusculum | Turf | 0.189 | AM |
112 | Fissidentaceae | Fissidens exilis | Turf | 0.188 | AM |
113 | Pottiaceae | Trichostomum brachydontium | Turf | 0.188 | AM |
114 | Brachytheciaceae | Brachythecium kuroishicum | Weft | 0.183 | AS |
115 | Mniaceae | Pohlia minor | Turf | 0.174 | AM |
116 | Bryaceae | Bryum pallens | Turf | 0.173 | AM |
117 | Entodontaceae | Entodon obtusatus | Mat | 0.171 | AM |
118 | Splachnaceae | Tayloria lingulata | Turf | 0.154 | AM |
119 | Grimmiaceae | Grimmia elatior | Cushion | 0.146 | AM |
120 | Mniaceae | Plagiomnium drummondii | Turf | 0.146 | AM |
121 | Mniaceae | Pohlia nutans | Turf | 0.145 | AM |
122 | Brachytheciaceae | Brachythecium salebrosum | Weft | 0.141 | AM |
123 | Pottiaceae | Bryoerythrophyllum inaequalifolium | Turf | 0.131 | AS |
124 | Bryaceae | Bryum blandum subsp. handelii | Turf | 0.131 | AM |
125 | Funariaceae | Physcomitrium sphaericum | Turf | 0.126 | AM |
126 | Bryaceae | Bryum purpurascens | Turf | 0.115 | AM |
127 | Pottiaceae | Bellibarbula recurva | Turf | 0.113 | AM |
128 | Brachytheciaceae | Brachythecium piligerum | Weft | 0.108 | AM |
129 | Pottiaceae | Tortula planifolia | Turf | 0.101 | AM |
130 | Bryaceae | Brachymenium sinense | Turf | 0.100 | AS |
131 | Pottiaceae | Tortula muralis | Turf | 0.098 | AM |
132 | Bryaceae | Bryum thomsonii | Turf | 0.096 | AM |
133 | Mniaceae | Pohlia crudoides | Turf | 0.095 | AM |
134 | Hypnaceae | Ptilium crista-castrensis | Weft | 0.095 | AM |
135 | Hylocomiaceae | Rhytidiadelphus squarrosus | Weft | 0.095 | AM |
136 | Funariaceae | Physcomitrium eurystomum | Turf | 0.093 | AM |
137 | Polytrichaceae | Polytrichastrum papillatum | Turf | 0.092 | AS |
138 | Grimmiaceae | Grimmia anodon | Cushion | 0.092 | AS |
139 | Grimmiaceae | Grimmia elongata | Cushion | 0.089 | AS |
140 | Splachnaceae | Tayloria subglabra | Turf | 0.087 | AM |
141 | Bryaceae | Brachymenium nepalense | Turf | 0.085 | AM |
142 | Bryaceae | Bryum salakense | Turf | 0.073 | AM |
143 | Pottiaceae | Syntrichia caninervis | Turf | 0.064 | AM |
144 | Leucobryaceae | Campylopus flexuosus | Turf | 0.060 | AM |
145 | Grimmiaceae | Schistidium subconfertum | Cushion | 0.059 | AM |
146 | Pottiaceae | Tortula yuennanensis | Turf | 0.059 | AM |
147 | Plagiotheciaceae | Plagiothecium piliferum | Mat | 0.053 | AM |
148 | Grimmiaceae | Grimmia pulvinata | Cushion | 0.051 | AM |
149 | Bryaceae | Bryum rutilans | Turf | 0.040 | AS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; He, Y.; Tian, Y.; Zhao, Z. Bryophyte Flora in Alpine Grasslands of the Qinghai–Tibet Plateau Based on Plot Sampling. Diversity 2024, 16, 143. https://doi.org/10.3390/d16030143
Liu Y, He Y, Tian Y, Zhao Z. Bryophyte Flora in Alpine Grasslands of the Qinghai–Tibet Plateau Based on Plot Sampling. Diversity. 2024; 16(3):143. https://doi.org/10.3390/d16030143
Chicago/Turabian StyleLiu, Yan, Ying He, Yue Tian, and Zhengwu Zhao. 2024. "Bryophyte Flora in Alpine Grasslands of the Qinghai–Tibet Plateau Based on Plot Sampling" Diversity 16, no. 3: 143. https://doi.org/10.3390/d16030143
APA StyleLiu, Y., He, Y., Tian, Y., & Zhao, Z. (2024). Bryophyte Flora in Alpine Grasslands of the Qinghai–Tibet Plateau Based on Plot Sampling. Diversity, 16(3), 143. https://doi.org/10.3390/d16030143