The Morphological Differentiation and Evolutionary Origins of Artemia in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Culture Conditions
2.2. Measuring Individuals
2.3. Statistical Analysis
2.4. DNA Extract, PCR Amplification and Sequence Alignment
2.5. Phylogenetic Study and Divergence Time Estimation
2.6. Population Genetics Based on CO1 Datasets
3. Results
3.1. Morphology
3.2. Mitochondrial Phylogeny of Artemia in China
3.3. Genetic Diversity and Population Structure
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhont, J.; Sorgeloos, P. Applications of Artemia. In Artemia: Basic and Applied Biology; Abatzopoulos, T.J., Beardmore, J.A., Clegg, J.S., Sorgeloos, P., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 251–277. [Google Scholar]
- Van Stappen, G. Zoogeography. In Artemia: Basic and Applied Biology; Abatzopoulos, T.J., Beardmore, J.A., Clegg, J.S., Sorgeloos, P., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 171–224. [Google Scholar]
- Kappas, I.; Baxevanis, A.D.; Abatzopoulos, T.J. Phylogeographic Patterns in Artemia: A Model Organism for Hypersaline Crustaceans, in Phylogeography and Population Genetics in Crustacea; Held, C., Koenemann, S., Christoph, D., Schubart, C.D., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2011; pp. 233–255. [Google Scholar]
- Asem, A.; Yang, C.; Eimanifar, A.; Hontoria, F.; Varó, I.; Mahmoudi, F.; Fu, C.-Z.; Shen, C.-Y.; Rastegar-Pouyani, N.; Wang, P.-Z.; et al. Phylogenetic analysis of problematic Asian species of Artemia Leach, 1819 (Crustacea, Anostraca), with the descriptions of two new species. J. Crustac. Biol. 2023, 43, ruad002. [Google Scholar] [CrossRef]
- Gajardo, G.; Abatzopoulos, T.J.; Kappas, I.; Beardmore, J.A. Evolution and Speciation. In Artemia: Basic and Applied Biology; Abatzopoulos, T.J., Beardmore, J.A., Clegg, J.S., Sorgeloos, P., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 225–250. [Google Scholar]
- Eimanifar, A.; Van Stappen, G.; Marden, B.; Wink, M. Artemia biodiversity in Asia with the focus on the phylogeography of the introduced American species Artemia franciscana Kellogg, 1906. Mol. Phylogenetics Evol. 2014, 79, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Maccari, M.; Amat, F.; Gómez, A. Origin and Genetic Diversity of Diploid Parthenogenetic Artemia in Eurasia. PLoS ONE 2013, 8, e83348. [Google Scholar] [CrossRef] [PubMed]
- Eimanifar, A.; Van Stappen, G.; Wink, M. Geographical distribution and evolutionary divergence times of Asian populations of the brine shrimp Artemia (Crustacea, Anostraca). Zool. J. Linn. Soc. 2015, 174, 447–458. [Google Scholar] [CrossRef]
- Abatzopoulos, T.J.; Amat, F.; Baxevanis, A.D.; Belmonte, G.; Hontoria, F.; Maniatsi, S.; Moscatello, S.; Mura, G.; Shadrin, N.V. Updating Geographic Distribution of Artemia urmiana Günther, 1890 (Branchiopoda: Anostraca) in Europe: An Integrated and Interdisciplinary Approach. Int. Rev. Hydrobiol. 2009, 94, 560–579. [Google Scholar] [CrossRef]
- Hou, L.; Bi, X.; Zou, X.; He, C.; Yang, L.; Qu, R.; Liu, Z. Molecular systematics of bisexual Artemia populations. Aquac. Res. 2006, 37, 671–680. [Google Scholar] [CrossRef]
- Sainz-Escudero, L.; López-Estrada, E.K.; Rodríguez-Flores, P.C.; García-París, M. Settling taxonomic and nomenclatural problems in brine shrimps, Artemia (Crustacea: Branchiopoda: Anostraca), by integrating mitogenomics, marker discordances and nomenclature rules. PeerJ 2021, 9, e10865. [Google Scholar] [CrossRef]
- Li, W.-J.; Guo, Y.; Sun, S.-C. Population genetics of Artemia urmiana species complex (Crustacea, Anostraca): A group with asymmetrical dispersal and gene flow mediated by migratory waterfowl. Gene 2024, 894, 147957. [Google Scholar] [CrossRef]
- Asem, A.; Eimanifar, A.; Sun, S.-C. Genetic variation and evolutionary origins of parthenogenetic Artemia (Crustacea: Anostraca) with different ploidies. Zool. Scr. 2016, 45, 421–436. [Google Scholar] [CrossRef]
- Hontoria, F.; Amat, F. Morphological characterization of adult Artemia (Crustacea, Branchiopoda) from different geographical origin. Mediterranean populations. J. Plankton Res. 1992, 14, 949–959. [Google Scholar] [CrossRef]
- Triantaphyllidis, G.V.; Criel, G.R.J.; Abatzopoulos, T.J.; Sorgeloos, P. International study on Artemia. LIII. Morphological study of Artemia with emphasis to Old World strains. I. Bisexual populations. Hydrobiologia 1997, 357, 139–153. [Google Scholar] [CrossRef]
- Triantaphyllidis, G.V.; Criel, G.R.J.; Abatzopoulos, T.J.; Thomas, K.M.; Peleman, J.; Beardmore, J.A.; Sorgeloos, P. International Study on Artemia. LVII. Morphological and molecular characters suggest conspecificity of all bisexual European and North African Artemia populations. Mar. Biol. 1997, 129, 477–487. [Google Scholar] [CrossRef]
- Baxevanis, A.D.; Triantaphyllidis, G.V.; Kappas, I.; Triantafyllidis, A.; Triantaphyllidis, C.D.; Abatzopoulos, T.J. Evolutionary assessment of Artemia tibetiana (Crustacea, Anostraca) based on morphometry and 16S rRNA RFLP analysis. J. Zool. Syst. Evol. Res. 2005, 43, 189–198. [Google Scholar] [CrossRef]
- Hachem Ben, N.; Amel Ben Rejeb, J.; Salah, R.M. Morphometric Characterization of Adult Artemia (Crustacea: Branchiopoda) Populations from Costal and Inland Tunisian Salt Lakes. Afr. Invertebr. 2013, 54, 543–555. [Google Scholar]
- Zheng, B.; Sun, S.-C. Morphology and biometry of two Chinese diploid parthenogenetic Artemia populations with a special emphasis on the gonopods and frontal knobs of rare males. Zool. Anz. 2023, 303, 80–89. [Google Scholar] [CrossRef]
- Triantaphyllidis, G.V.; Criel, G.R.J.; Abatzopoulos, T.J.; Sorgeloos, P. International study on Artemia. LIV. Morphological study of Artemia with emphasis to Old World strains. II. Parthenogenetic populations. Hydrobiologia 1997, 357, 155–163. [Google Scholar] [CrossRef]
- Asem, A. Comparative Morphology and Molecular Phylogeny of Parthenogenetica Artemia (Crustacea: Anostraca) from China. Ph.D. Thesis, Degree-Ocean University of China, Qiangdao, China, 2016. [Google Scholar]
- De Vos, S.; Rombauts, S.; Coussement, L.; Dermauw, W.; Vuylsteke, M.; Sorgeloos, P.; Clegg, J.S.; Nambu, Z.; Van Nieuwerburgh, F.; Norouzitallab, P.; et al. The genome of the extremophile Artemia provides insight into strategies to cope with extreme environments. BMC Genom. 2021, 22, 635. [Google Scholar] [CrossRef] [PubMed]
- Deji, G.; Zhang, C.; Sui, L.; Han, X. The complete mitochondrial genome of Artemia salina Leach, 1819 (Crustacea: Anostraca). Mitochondrial DNA Part B 2021, 6, 3255–3256. [Google Scholar] [CrossRef]
- Asem, A.; Eimanifar, A.; Li, W.; Shen, C.-Y.; Shikhsarmast, F.M.; Dan, Y.-T.; Lu, H.; Zhou, Y.; Chen, Y.; Wang, P.-Z.; et al. Reanalysis and Revision of the Complete Mitochondrial Genome of Artemia urmiana Günther, 1899 (Crustacea: Anostraca). Diversity 2021, 13, 14. [Google Scholar] [CrossRef]
- Sainz-Escudero, L.; López-Estrada, E.K.; Rodríguez-Flores, P.C.; García-París, M. Brine shrimps adrift: Historical species turnover in Western Mediterranean Artemia (Anostraca). Biol. Invasions 2022, 24, 2477–2498. [Google Scholar] [CrossRef]
- Zheng, B.; Sun, S.-C. Review of the biogeography of Artemia Leach, 1819 (Crustacea: Anostraca) in China. Int. J. Artemia Biol. 2013, 3, 20–50. [Google Scholar]
- Torrentera, L.; Dodson, S.I. Morphological Diversity of Populations of Artemia (Branchiopoda) in Yucatan. J. Crustac. Biol. 1995, 15, 86–102. [Google Scholar] [CrossRef]
- Torrentera, L.; Belk, D. New penis characters to distinguish between two American Artemia species. Hydrobiologia 2002, 470, 149–156. [Google Scholar] [CrossRef]
- Mura, G.; Brecciaroli, B. Use of morphological characters for species separation within the genus Artemia (Crustacea, Branchiopoda). Hydrobiologia 2004, 520, 179–183. [Google Scholar] [CrossRef]
- Zheng, B.; Sun, S.-C. Taxonomic consideration of eight Chinese bisexual Artemia populations, based on the morphology of frontal knob and gonopod and the result of cross-breeding tests. Zootaxa 2008, 1919, 25–44. [Google Scholar] [CrossRef]
- Mura, G.; Gajardo, G. The highly divergent New World Artemia species (Branchiopoda, Anostraca), A. franciscana and A. persimilis, show subtle differences in morphological traits involved in mating. Zootaxa 2011, 2912, 37–48. [Google Scholar] [CrossRef]
- Amat, F. Differentiation in Artemia strains from Spain. In The Brine Shrimp Artemia; Universa Press Wetteren: Belgium, Switzerland, 1980; pp. 19–39. [Google Scholar]
- Asem, A.; Sun, S.-C. Morphological differentiation of seven parthenogenetic Artemia (Crustacea: Branchiopoda) populations from China, with special emphasis on ploidy degrees. Microsc. Res. Tech. 2016, 79, 258–266. [Google Scholar] [CrossRef]
- Boyer, L.; Jabbour-Zahab, R.; Mosna, M.; Haag, C.R.; Lenormand, T. Not so clonal asexuals: Unraveling the secret sex life of Artemia parthenogenetica. Evol. Lett. 2021, 5, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Sun, M.; Lian, J.; Hou, S. Feature dimensionality reduction: A review. Complex Intell. Syst. 2022, 8, 2663–2693. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; Dewaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Gholamzadeh, S.; Incekara, Ü. Review of molecular taxonomy studies on Coleoptera aquatic insects. Int. J. Entomol. Res. 2016, 4, 25–36. [Google Scholar]
- Rach, J.; Bergmann, T.; Paknia, O.; DeSalle, R.; Schierwater, B.; Hadrys, H. The marker choice: Unexpected resolving power of an unexplored CO1 region for layered DNA barcoding approaches. PLoS ONE 2017, 12, e0174842. [Google Scholar] [CrossRef] [PubMed]
- Girard, E.B.; Langerak, A.; Jompa, J.; Wangensteen, O.S.; Macher, J.N.; Renema, W. Mitochondrial Cytochrome Oxidase Subunit 1: A Promising Molecular Marker for Species Identification in Foraminifera. Front. Mar. Sci. 2022, 9, 809659. [Google Scholar] [CrossRef]
- Horváth, Z.; Lejeusne, C.; Amat, F.; Sánchez-Fontenla, J.; Vad, C.F.; Green, A.J. Eastern spread of the invasive Artemia franciscana in the Mediterranean Basin, with the first record from the Balkan Peninsula. Hydrobiologia 2018, 822, 229–235. [Google Scholar] [CrossRef]
- Muñoz, J.; Amat, F.; Green, A.J.; Figuerola, J.; Gomez, A. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range. Peerj 2013, 1, e200. [Google Scholar] [PubMed]
- Wang, W.; Luo, Q.; Guo, H.; Bossier, P.; Van Stappen, G.; Sorgeloos, P.; Xin, N.; Sun, Q.; Hu, S.; Yu, J. Phylogenetic analysis of brine shrimp (artemia) in China using DNA barcoding. Genom. Proteom. Bioinform. 2008, 6, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Maniatsi, S.; Baxevanis, A.D.; Kappas, I.; Deligiannidis, P.; Triantafyllidis, A.; Papakostas, S.; Bougiouklis, D.; Abatzopoulos, T.J. Is polyploidy a persevering accident or an adaptive evolutionary pattern? The case of the brine shrimp Artemia. Mol. Phylogenet. Evol. 2011, 58, 353–364. [Google Scholar] [CrossRef]
- Potter, P.E.; Szatmari, P. Global Miocene tectonics and the modern world. Earth-Sci. Rev. 2009, 96, 279–295. [Google Scholar] [CrossRef]
- Steinthorsdottir, M.; Coxall, H.K.; De Boer, A.M.; Huber, M.; Barbolini, N.; Bradshaw, C.D.; Burls, N.J.; Feakins, S.J.; Gasson, E.; Henderiks, J.; et al. The Miocene: The Future of the Past. Paleoceanogr. Paleoclimatol. 2021, 36, e2020PA004037. [Google Scholar] [CrossRef]
- Zhisheng, A.; Kutzbach, J.E.; Prell, W.L.; Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 2001, 411, 62–66. [Google Scholar] [CrossRef]
- Spicer, R.A.; Su, T.; Valdes, P.J.; Farnsworth, A.; Wu, F.X.; Shi, G.; Spicer, T.E.V.; Zhou, Z. Why ‘the uplift of the Tibetan Plateau’ is a myth. Natl. Sci. Rev. 2020, 8, nwaa091. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.-L.; Wang, M.-M.; Cun, Y.-Z.; Yang, F.-S.; Wang, S.-S.; Ran, J.-H.; Wang, X.-Q. Phylogeographic Evidence for a Link of Species Divergence of Ephedra in the Qinghai-Tibetan Plateau and Adjacent Regions to the Miocene Asian Aridification. PLoS ONE 2013, 8, e56243. [Google Scholar] [CrossRef]
- Zhu, L.; Song, J.; Zhou, J.-L.; Si, J.; Cui, B.-K. Species Diversity, Phylogeny, Divergence Time, and Biogeography of the Genus Sanghuangporus (Basidiomycota). Front. Microbiol. 2019, 10, 812. [Google Scholar] [CrossRef]
- Othman, S.N.; Litvinchuk, S.N.; Maslova, I.; Dahn, H.; Messenger, K.R.; Andersen, D.; Jowers, M.J.; Kojima, Y.; Skorinov, D.V.; Yasumiba, K.; et al. From Gondwana to the Yellow Sea, evolutionary diversifications of true toads Bufo sp. in the Eastern Palearctic and a revisit of species boundaries for Asian lineages. eLife 2022, 11, e70494. [Google Scholar] [CrossRef]
- Asem, A.; Eimanifar, A.; Rastegar-Pouyani, N.; Hontoria, F.; De Vos, S.; Van Stappen, G.; Sun, S.-C. An overview on the nomenclatural and phylogenetic problems of native Asian brine shrimps of the genus Artemia Leach, 1819 (Crustacea, Anostraca). ZooKeys 2020, 902, 1–15. [Google Scholar] [CrossRef]
- Fu, J.; Wen, L. Impacts of Quaternary glaciation, geological history and geography on animal species history in continental East Asia: A phylogeographic review. Mol. Ecol. 2023, 32, 4497–4514. [Google Scholar] [CrossRef]
- Li, J.K.; Zhou, E.X.; Li, D.X.; Huang, S.Q. Multiple northern refugia for Asian sacred lotus, an aquatic plant with characteristics of ice-age endurance. Aust. J. Bot. 2010, 58, 463–472. [Google Scholar] [CrossRef]
- Hao, Q. Glacial Refugia and the Postglacial Migration of Dominant Tree Species in Northern China. In The LGM Distribution of Dominant Tree Genera in Northern China’s Forest-Steppe Ecotone and Their Postglacial Migration; Springer: Singapore, 2018; pp. 31–56. [Google Scholar]
- Yang, R.; van Loon, A.J. Chapter 1—Sedimentary and tectonic development of the Ordos Basin and its hydrocarbon potential. In The Ordos Basin; Yang, R., Van Loon, A.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–29. [Google Scholar]
- Little, T.J.; Hebert, P.D.N. Abundant asexuality in tropical freshwater ostracodes. Heredity 1994, 73, 549–555. [Google Scholar] [CrossRef]
- Neiman, M.; Jokela, J.; Lively, C.M. Variation in asexual lineage age in Potamopyrgus antipodarum, a New Zealand snail. Evolution 2005, 59, 1945–1952. [Google Scholar]
- Kearney, M.; Blacket, M.J. The evolution of sexual and parthenogenetic Warramaba: A window onto Plio–Pleistocene diversification processes in an arid biome. Mol. Ecol. 2008, 17, 5257–5275. [Google Scholar] [CrossRef] [PubMed]
- Borissov, S.B.; Hristov, G.H.; Chobanov, D.P. Phylogeography of the Poecilimon ampliatus species group (Orthoptera: Tettigoniidae) in the context of the Pleistocene glacial cycles and the origin of the only thelytokous parthenogenetic phaneropterine bush-cricket. Arthropod Syst. Phylogeny 2021, 79, 401–418. [Google Scholar] [CrossRef]
- Schön, I. Did Pleistocene glaciations shape genetic patterns of European ostracods? A phylogeographic analysis of two species with asexual reproduction. Hydrobiologia 2007, 575, 33–50. [Google Scholar] [CrossRef]
- Maccari M, Gómez A, Hontoria F, Amat, F. Functional rare males in diploid parthenogenetic Artemia. Journal of Evolutionary Biology. 2013, 26, 1934–1948.
- Zuo, J.; Xu, Q.; Deng, Y.; Liang, X.; Han, X.; Sui, L. Comparative study of Artemia taxonomic and evolution using three DNA barcodes (in Chinese). J. Tianjin Univ. Sci. Technol. 2022, 37, 28–36. [Google Scholar]
- Naganawa, H.; Mura, G. Two new cryptic species of Artemia (Branchiopoda, Anostraca) from Mongolia and the possibility of invasion and disturbance by the aquaculture industry in East Asia. Crustaceana 2017, 90, 1679–1698. [Google Scholar] [CrossRef]
- Muñoz, J.; Gomez, A.; Green, A.J.; Figuerola, J.; Amat, F.; Rico, C. Evolutionary origin and phylogeography of the diploid obligate parthenogen Artemia parthenogenetica (Branchiopoda: Anostraca). PLoS ONE 2010, 5, e11932. [Google Scholar] [CrossRef]
- Asem, A.; Li, W.; Wang, P.Z.; Eimanifar, A.; Shen, C.Y.; De Vos, S.; Van Stappen, G. The complete mitochondrial genome of Artemia sinica Cai, 1989 (Crustacea: Anostraca) using next-generation sequencing. Mitochondrial DNA Part B 2019, 4, 746–747. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Q.; Sun, J.; Liu, F.; Wu, G.; Yu, J.; Wang, W. Mitochondrial genome sequences of Artemia tibetiana and Artemia urmiana: Assessing molecular changes for high plateau adaptation. Sci. China Life Sci. 2013, 56, 440–452. [Google Scholar] [CrossRef]
Abbr. | Geographic Coordinates | Haplotype/GenBank Accession Number | Species | |
---|---|---|---|---|
Yuncheng, Shanxi, China | YC | 34°58′ N, 111°00′ E | H5, H16, H17, H18, H19, H20, H21, H22, H23, H24 | A. sinica |
Hangjinqi, Inner Mongolia, China | HJQ | 40°08′ N, 108°26′ E | H6, H7, H8, H9 | A. sinica |
Guyuan, Hebei, China | GY | 41°34′ N, 115°00′ E | H33, H34 | A. sinica |
Xiaochaidan, Qinghai, China | XCD | 37°27′ N, 95°29′ E | H10, H11, H12, H13, H14, H15 | A. sinica |
Cangzhou, Hebei, China | CZ | 38°18′ N, 117°37′ E | H47, H48, H49, H50, H51 | A. franciscana |
Lagkor Co., Tibet, China | LGC | 32°03′ N, 84°12′ E | H82, H83, H84, H85 | A. tibetiana |
Jingyuhu, Xinjiang, China | JYH | 36°19′ N, 89°21′ E | H81 | A. tibetiana |
Goulu Co., Qinghai, China | GLC | 34°36′ N, 92°28′ E | H75, H76, H77, H78, H79, H80 | A. tibetiana |
Yishanhu, Qinghai, China | YSH | 35°14′ N, 90°53′ E | H56, H57, H58 | A. tibetiana |
Gahai, Qinghai, China | GH | 37°06′ N, 97°35′ E | H67, H71 | A. parthenogenetica |
Haifeng, Heibei, China | HF | 38°10′ N, 117°46′ E | H35, H51, H52, H53, H67 | A. sinica, A. franciscana, A. parthenogenetica |
Kyêbxang Co., Tibet, China | QXC | 32°27′ N, 89°53′ E | H61, H62 | A. tibetiana |
Aibi Lake, Xinjiang, China | ABI | 45°11′ N, 82°35′ E | H67, H68, H69, H70 | A. parthenogenetica |
Barkol Lake, Xinjiang, China | BLK | 43°36′ N, 92°48′ E | H35, H36, H37 | A. parthenogenetica |
Hangu, Tianjin, China | HG | 38°57′ N, 117°40′ E | H48, H54 | A. franciscana |
Tangshan, Hebei, China | TS | 39°05′ N, 118°20′ E | H5, H16, H19, H38, H39, H52, H55, H86, H87 | A. sinica, A. franciscana, A. parthenogenetica |
Yimeng, Inner Mongolia, China | YM | 39°49‘ N, 110° E | H1, H2, H3, H4, H5 | A. sinica |
Badanjilin, Inner Mongolia, China | BDJL | 41°20′ N, 102°3′ E | H25, H26, H27, H28, H29, H30, H31, H32 | A. sinica |
Xiaohu, Xinjiang, China | XH | 40°41′ N, 88°46′ E | H63, H64 | A. tibetiana |
Ruoqiang, Xinjiang, China | RQ | 39°1′ N, 88°10′ E | H72, H73, H74 | A. parthenogenetica |
Wulan, Qinghai, China | WL | 36°56′ N, 98°29′ E | H42, H43, H44 | A. parthenogenetica |
Hoh Xili, Qinghai, China | KKXL | 35°34′ N, 91°7′ E | H42, H45, H46 | A. parthenogenetica |
Lake Urmia, Iran | URM | 37°41′ N, 45° 18′ E | H40, H41, H65, H66 | A. urmiana, A. parthenogenetica |
Tanggu, Tianjin, China | TG | 39°1′ N, 117°39′ E | MG572052 | A. parthenogenetica |
Borli, Kazakhstan | BOR | 51°16′ N, 53°17′ E | MG572057 | A. parthenogenetica |
Aral, Kazakhstan | ARA | 43°56′ N, 65°16′ E | MG572059 | A. parthenogenetica |
Big Yarovoe, Russia | BYV | 52.853 N, 78.627 E | MG572060 | A. parthenogenetica |
Ebeity, Russia | EBE | 54°38′ N, 71°44′ E | MG572064 | A. parthenogenetica |
Naritusumu, Inner Mongolia, China | NRT | 42°52′ N, 115°50′ E | KX925416 | A. sinica |
Ximengdahan, Inner Mongolia, China | XMD | 43°58′ N, 113°44′ E | MG572076 | A. sinica |
Haolebaoqing, Inner Mongolia, China | HLB | 38°54′ N, 108°30′ E | MG572077 | A. sinica |
Yimeng, Inner Mongolia, China | YM | 39°49′ N, 110° E | MG572079 | A. sinica |
Bameng, Inner Mongolia, China | BM | 40°44′ N, 107°24′ E | MG572080 | A. sinica |
Bayanhu, Inner Mongolia, China | BYH | 39°23′ N, 108°00′ E | MG572081 | A. sinica |
Murcia, Spain | MUR | 37°49′ N, 0°45′W | OM686871 | A. parthenogenetica |
Santarem, Portugal | SAT | 39°21′ N, 8°56′W | OM686872 | A. parthenogenetica |
Guadalajara, Spain | GUA | 41°05′ N, 2°36′W | OM686873 | A. parthenogenetica |
Zaragoza, Spain | ZAR | 41°25′ N, 0°11′W | OM686874 | A. parthenogenetica |
Yangnapeng Co, Tibet, China | YNP | 32°18′ N, 89°45′ E | JQ975178 | A. tibetiana |
Nima, Tibet, China | NIM | 31°55′ N, 87°52′ E | JQ975177 | A. tibetiana |
Urmia Lake, Iran | URM | 37°41′ N, 45° 18′ E | MN240408 | A. urmiana |
Kazakhstan | KAZ | 48°0′ N, 68°0′ E | NC072957 | A. amati |
Haiyan Lake, Qinghai, China | HYH | 36°48′ N, 100°41′ E | NC072958 | A. sorgeloosi |
Ejinor, Inner Mongolia, China | EJI | 45°14′ N, 116°30′ E | NC042147 | A. sinica |
The United States of America | USA | - | NC001620 | A. franciscana |
TL | AL | AL38 | AL8 | AW3 | LFL | RFL | HW | FAL | DE | DCE | SLF | SRF | OW | RA | ROW | RAW3 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A.fran | CZ (n = 26) | 9.36 ± 0.73 | 4.76 ± 0.52 | 3.7 ± 0.43 | 1.13 ± 0.21 | 0.62 ± 0.05 | 0.27 ± 0.04 | 0.27 ± 0.05 | 0.83 ± 0.09 | 0.73 ± 0.09 | 1.45 ± 0.12 | 0.28 ± 0.02 | 12.85 ± 1.59 | 13.38 ± 1.68 | 1.68 ± 0.15 | 0.507 ± 0.022 | 0.355 ± 0.032 | 0.131 ± 0.02 |
HF (n = 16) | 9.39 ± 1.44 | 5.13 ± 0.88 | 4.1 ± 0.64 | 1.14 ± 0.23 | 0.58 ± 0.12 | 0.26 ± 0.05 | 0.27 ± 0.05 | 0.79 ± 0.13 | 0.72 ± 0.15 | 1.33 ± 0.21 | 0.26 ± 0.04 | 11.63 ± 1.26 | 12.38 ± 2 | 1.55 ± 0.34 | 0.546 ± 0.027 | 0.302 ± 0.037 | 0.112 ± 0.016 | |
HG (n = 37) | 8.78 ± 0.87 | 4.32 ± 0.56 | 3.37 ± 0.47 | 1.07 ± 0.18 | 0.61 ± 0.12 | 0.32 ± 0.06 | 0.32 ± 0.06 | 0.87 ± 0.09 | 0.66 ± 0.1 | 1.4 ± 0.18 | 0.28 ± 0.05 | 12.08 ± 2.13 | 11.54 ± 3.03 | 1.54 ± 0.33 | 0.491 ± 0.021 | 0.357 ± 0.055 | 0.142 ± 0.022 | |
TS (n = 9) | 7.74 ± 0.31 | 3.59 ± 0.33 | 3.04 ± 0.07 | 0.76 ± 0.2 | 0.55 ± 0.05 | 0.28 ± 0.08 | 0.29 ± 0.1 | 0.7 ± 0.16 | 0.61 ± 0.18 | 1.23 ± 0.08 | 0.25 ± 0.02 | 11 ± 3.46 | 12.67 ± 4.36 | 1.35 ± 0.23 | 0.466 ± 0.055 | 0.376 ± 0.051 | 0.152 ± 0.01 | |
Mean (n = 88) | 8.96 ± 1.04 | 4.52 ± 0.74 | 3.57 ± 0.56 | 1.07 ± 0.23 | 0.60 ± 0.1 | 0.29 ± 0.06 | 0.29 ± 0.07 | 0.83 ± 0.12 | 0.69 ± 0.12 | 1.38 ± 0.17 | 0.28 ± 0.04 | 12.11 ± 2.08 | 12.35 ± 2.77 | 1.57 ± 0.29 | 0.503 ± 0.036 | 0.348 ± 0.051 | 0.135 ± 0.023 | |
A.sinica | BD (n = 24) | 9.53 ± 1.15 | 5.19 ± 0.73 | 4.02 ± 0.64 | 1.21 ± 0.27 | 0.6 ± 0.06 | 0.42 ± 0.13 | 0.42 ± 0.09 | 0.77 ± 0.09 | 1.05 ± 0.13 | 1.37 ± 0.19 | 0.27 ± 0.05 | 10.59 ± 2.4 | 11.09 ± 2.18 | 1.5 ± 0.19 | 0.543 ± 0.03 | 0.278 ± 0.029 | 0.117 ± 0.017 |
GY (n = 26) | 9.26 ± 1.39 | 5.12 ± 0.73 | 4 ± 0.5 | 1.21 ± 0.17 | 0.47 ± 0.07 | 0.36 ± 0.06 | 0.36 ± 0.06 | 0.71 ± 0.11 | 0.86 ± 0.15 | 1.38 ± 0.29 | 0.24 ± 0.03 | 11.85 ± 3.25 | 12.46 ± 2.7 | 1.36 ± 0.31 | 0.553 ± 0.023 | 0.265 ± 0.036 | 0.092 ± 0.015 | |
HJ (n = 34) | 10.37 ± 1.62 | 5.46 ± 0.8 | 4.14 ± 0.57 | 1.14 ± 0.16 | 0.66 ± 0.1 | 0.51 ± 0.22 | 0.52 ± 0.24 | 0.81 ± 0.14 | 1.04 ± 0.18 | 1.54 ± 0.16 | 0.29 ± 0.05 | 12.29 ± 2.58 | 12.41 ± 2 | 1.98 ± 0.49 | 0.527 ± 0.032 | 0.363 ± 0.072 | 0.121 ± 0.018 | |
TS (n = 9) | 10.46 ± 0.22 | 5.78 ± 0.31 | 4.47 ± 0.21 | 1.3 ± 0.14 | 0.67 ± 0.06 | 0.52 ± 0.05 | 0.53 ± 0.08 | 0.77 ± 0.08 | 0.99 ± 0.12 | 1.5 ± 0.09 | 0.27 ± 0.04 | 13.33 ± 0.5 | 12 ± 3.46 | 1.71 ± 0.13 | 0.552 ± 0.018 | 0.295 ± 0.019 | 0.115 ± 0.009 | |
YC (n = 30) | 9.54 ± 1.49 | 5.39 ± 0.89 | 4.33 ± 0.67 | 1.25 ± 0.24 | 0.54 ± 0.12 | 0.36 ± 0.09 | 0.37 ± 0.09 | 0.7 ± 0.15 | 0.91 ± 0.19 | 1.42 ± 0.25 | 0.24 ± 0.04 | 11.79 ± 2.09 | 12.62 ± 2.4 | 1.57 ± 0.38 | 0.566 ± 0.028 | 0.29 ± 0.038 | 0.100 ± 0.013 | |
YM (n = 25) | 9.75 ± 0.75 | 5.46 ± 0.55 | 4.27 ± 0.36 | 1.2 ± 0.08 | 0.6 ± 0.06 | 0.42 ± 0.05 | 0.42 ± 0.09 | 0.75 ± 0.06 | 0.93 ± 0.07 | 1.49 ± 0.17 | 0.28 ± 0.03 | 13.2 ± 1.63 | 13 ± 2.33 | 1.54 ± 0.23 | 0.558 ± 0.019 | 0.281 ± 0.021 | 0.111 ± 0.006 | |
Mean (n = 148) | 9.77 ± 1.35 | 5.36 ± 0.75 | 4.18 ± 0.56 | 1.21 ± 0.19 | 0.58 ± 0.11 | 0.43 ± 0.14 | 0.43 ± 0.15 | 0.75 ± 0.12 | 0.96 ± 0.16 | 1.45 ± 0.22 | 0.27 ± 0.05 | 12.08 ± 2.49 | 12.34 ± 2.43 | 1.62 ± 0.4 | 0.549 ± 0.03 | 0.3 ± 0.057 | 0.109 ± 0.018 | |
A.par | ABI (n = 27) | 9.84 ± 1.18 | 5.35 ± 0.82 | 4.24 ± 0.56 | 1.17 ± 0.23 | 0.62 ± 0.08 | 0.36 ± 0.07 | 0.37 ± 0.07 | 0.82 ± 0.11 | 1.14 ± 0.17 | 1.51 ± 0.15 | 0.27 ± 0.03 | 7.78 ± 3.25 | 8.11 ± 2.56 | 1.54 ± 0.28 | 0.543 ± 0.022 | 0.289 ± 0.028 | 0.117 ± 0.013 |
BLK (n = 23) | 9.71 ± 1.55 | 5.41 ± 1.05 | 4.3 ± 0.82 | 1.23 ± 0.29 | 0.61 ± 0.12 | 0.39 ± 0.12 | 0.38 ± 0.11 | 0.79 ± 0.17 | 1.13 ± 0.3 | 1.55 ± 0.33 | 0.3 ± 0.05 | 8.83 ± 2.99 | 8.52 ± 2.69 | 1.7 ± 0.29 | 0.553 ± 0.035 | 0.303 ± 0.031 | 0.114 ± 0.017 | |
GH (n = 20) | 10.5 ± 1.34 | 5.57 ± 0.86 | 4.34 ± 0.65 | 1.31 ± 0.24 | 0.65 ± 0.07 | 0.47 ± 0.11 | 0.47 ± 0.12 | 0.87 ± 0.11 | 1.15 ± 0.16 | 1.66 ± 0.21 | 0.29 ± 0.03 | 12.2 ± 2.91 | 13.05 ± 2.76 | 1.81 ± 0.33 | 0.531 ± 0.021 | 0.328 ± 0.027 | 0.118 ± 0.011 | |
HF (n= 4) | 9.37 ± 0.95 | 5.67 ± 0.78 | 4.64 ± 0.66 | 1.33 ± 0.11 | 0.52 ± 0.07 | 0.35 ± 0.04 | 0.31 ± 0.01 | 0.67 ± 0.07 | 1.21 ± 0.13 | 1.37 ± 0.11 | 0.26 ± 0.04 | 110. ± 2.31 | 11.5 ± 1.73 | 1.95 ± 0.01 | 0.605 ± 0.022 | 0.307 ± 0.004 | 0.093 ± 0.007 | |
KKXL (n = 24) | 9.3 ± 1.36 | 5.18 ± 0.93 | 4.2 ± 0.83 | 1.23 ± 0.23 | 0.54 ± 0.1 | 0.32 ± 0.08 | 0.31 ± 0.07 | 0.73 ± 0.13 | 1.22 ± 0.25 | 1.44 ± 0.19 | 0.28 ± 0.03 | 4.5 ± 2.74 | 4.9 ± 1.97 | 1.49 ± 0.38 | 0.555 ± 0.029 | 0.286 ± 0.044 | 0.105 ± 0.013 | |
TS (n = 6) | 7.22 ± 0.81 | 4.03 ± 0.55 | 3.53 ± 0.34 | 0.97 ± 0.11 | 0.42 ± 0.06 | 0.3 ± 0.06 | 0.28 ± 0.06 | 0.58 ± 0.07 | 0.78 ± 0.08 | 1.22 ± 0.1 | 0.23 ± 0.03 | 8.0 ± 3.29 | 9.5 ± 2.74 | 1.09 ± 0.11 | 0.557 ± 0.014 | 0.272 ± 0.011 | 0.103 ± 0.002 | |
WL (n = 20) | 11.22 ± 1.82 | 6.13 ± 1.12 | 4.76 ± 0.85 | 1.4 ± 0.28 | 0.71 ± 0.14 | 0.54 ± 0.14 | 0.54 ± 0.12 | 0.88 ± 0.16 | 1.54 ± 0.23 | 1.85 ± 0.26 | 0.35 ± 0.05 | 10.0 ± 1.71 | 9.17 ± 1.15 | 1.88 ± 0.52 | 0.546 ± 0.025 | 0.305 ± 0.059 | 0.116 ± 0.018 | |
Mean (n = 124) | 9.9 ± 1.64 | 5.44 ± 1.02 | 4.32 ± 0.76 | 1.25 ± 0.26 | 0.61 ± 0.12 | 0.4 ± 0.13 | 0.4 ± 0.13 | 0.8 ± 0.15 | 1.2 ± 0.28 | 1.57 ± 0.27 | 0.29 ± 0.05 | 8.64 ± 3.66 | 8.83 ± 3.37 | 1.65 ± 0.4 | 0.548 ± 0.029 | 0.299 ± 0.041 | 0.113 ± 0.015 |
TL | AL | AL38 | AL8 | AW3 | LFL | RFL | HW | FAL | DE | DCE | SLF | SRF | AW2 | RA | RAW2 | RAW3 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A.fran | CZ (n = 27) | 7.75 ± 0.58 | 3.58 ± 0.34 | 2.88 ± 0.31 | 0.92 ± 0.13 | 0.56 ± 0.05 | 0.31 ± 0.07 | 0.3 ± 0.06 | 0.71 ± 0.07 | 1.22 ± 0.13 | 1.65 ± 0.14 | 0.37 ± 0.04 | 13.69 ± 2.13 | 13.69 ± 1.89 | 0.68 ± 0.06 | 0.461 ± 0.018 | 0.192 ± 0.022 | 0.157 ± 0.016 |
HF (n = 15) | 7.51 ± 0.72 | 3.61 ± 0.25 | 3.04 ± 0.16 | 0.93 ± 0.06 | 0.51 ± 0.06 | 0.25 ± 0.05 | 0.25 ± 0.04 | 0.66 ± 0.05 | 1.13 ± 0.1 | 1.44 ± 0.14 | 0.35 ± 0.05 | 12 ± 1.13 | 10.8 ± 1.66 | 0.65 ± 0.09 | 0.483 ± 0.021 | 0.18 ± 0.018 | 0.14 ± 0.014 | |
HG (n = 31) | 7.07 ± 0.64 | 3.29 ± 0.37 | 2.72 ± 0.38 | 0.86 ± 0.15 | 0.47 ± 0.08 | 0.3 ± 0.07 | 0.31 ± 0.07 | 0.65 ± 0.13 | 1 ± 0.15 | 1.42 ± 0.19 | 0.33 ± 0.05 | 12 ± 1.87 | 12.04 ± 1.73 | 0.57 ± 0.09 | 0.465 ± 0.023 | 0.174 ± 0.031 | 0.146 ± 0.03 | |
TS (n = 14) | 6.86 ± 0.98 | 2.99 ± 0.53 | 2.43 ± 0.46 | 0.75 ± 0.18 | 0.56 ± 0.05 | 0.31 ± 0.06 | 0.33 ± 0.05 | 0.63 ± 0.11 | 0.95 ± 0.15 | 1.59 ± 0.18 | 0.34 ± 0.05 | 12.55 ± 2.21 | 12.73 ± 2.15 | 0.66 ± 0.06 | 0.434 ± 0.031 | 0.226 ± 0.046 | 0.195 ± 0.042 | |
Mean (n = 87) | 7.32 ± 0.77 | 3.39 ± 0.43 | 2.78 ± 0.39 | 0.87 ± 0.15 | 0.52 ± 0.08 | 0.3 ± 0.07 | 0.3 ± 0.06 | 0.67 ± 0.1 | 1.08 ± 0.17 | 1.52 ± 0.19 | 0.35 ± 0.05 | 12.62 ± 2.02 | 12.44 ± 2.08 | 0.63 ± 0.09 | 0.462 ± 0.027 | 0.189 ± 0.034 | 0.156 ± 0.032 | |
A.sinica | BD (n = 24) | 7.78 ± 1.31 | 3.75 ± 0.68 | 3 ± 0.58 | 0.88 ± 0.2 | 0.5 ± 0.1 | 0.53 ± 0.14 | 0.53 ± 0.15 | 0.64 ± 0.09 | 1.49 ± 0.25 | 1.54 ± 0.18 | 0.34 ± 0.05 | 15.67 ± 3.21 | 16.13 ± 3.53 | 0.64 ± 0.11 | 0.483 ± 0.04 | 0.172 ± 0.019 | 0.135 ± 0.027 |
GY (n = 29) | 7.97 ± 1.45 | 4.27 ± 0.81 | 3.54 ± 0.63 | 1.1 ± 0.2 | 0.45 ± 0.08 | 0.41 ± 0.08 | 0.4 ± 0.09 | 0.66 ± 0.15 | 1.1 ± 0.26 | 1.51 ± 0.34 | 0.33 ± 0.06 | 13.03 ± 2.56 | 13.81 ± 2.06 | 0.59 ± 0.09 | 0.535 ± 0.024 | 0.141 ± 0.025 | 0.106 ± 0.016 | |
HF (n = 9) | 7.11 ± 0.91 | 3.86 ± 0.64 | 3.22 ± 0.73 | 0.94 ± 0.26 | 0.45 ± 0.06 | 0.4 ± 0.09 | 0.35 ± 0.08 | 0.62 ± 0.07 | 0.99 ± 0.12 | 1.51 ± 0.05 | 0.32 ± 0.01 | 14.67 ± 3.04 | 13.33 ± 1.32 | 0.54 ± 0.09 | 0.541 ± 0.027 | 0.141 ± 0.011 | 0.118 ± 0.012 | |
HJ (n = 26) | 8.58 ± 0.99 | 4.62 ± 0.61 | 3.7 ± 0.55 | 1.11 ± 0.28 | 0.5 ± 0.09 | 0.39 ± 0.09 | 0.4 ± 0.09 | 0.72 ± 0.13 | 1.28 ± 0.27 | 1.62 ± 0.21 | 0.35 ± 0.06 | 12.15 ± 3.08 | 12.04 ± 2.71 | 0.68 ± 0.15 | 0.538 ± 0.032 | 0.148 ± 0.027 | 0.108 ± 0.014 | |
TS (n = 8) | 8.52 ± 0.82 | 4.28 ± 0.53 | 3.52 ± 0.42 | 1.04 ± 0.14 | 0.53 ± 0.04 | 0.48 ± 0.05 | 0.46 ± 0.06 | 0.59 ± 0.05 | 1.22 ± 0.1 | 1.52 ± 0.08 | 0.33 ± 0.05 | 13.13 ± 3.31 | 13.25 ± 1.04 | 0.69 ± 0.12 | 0.501 ± 0.015 | 0.159 ± 0.009 | 0.126 ± 0.007 | |
YC (n = 34) | 8.26 ± 1.08 | 4.43 ± 0.62 | 3.66 ± 0.5 | 1.13 ± 0.2 | 0.47 ± 0.06 | 0.41 ± 0.1 | 0.41 ± 0.1 | 0.65 ± 0.14 | 1.27 ± 0.21 | 1.62 ± 0.25 | 0.35 ± 0.05 | 14.35 ± 3.76 | 14.68 ± 4.03 | 0.67 ± 0.1 | 0.537 ± 0.041 | 0.152 ± 0.022 | 0.109 ± 0.018 | |
YM (n = 24) | 8.81 ± 0.84 | 4.83 ± 0.51 | 3.99 ± 0.36 | 1.21 ± 0.16 | 0.5 ± 0.05 | 0.48 ± 0.14 | 0.47 ± 0.13 | 0.61 ± 0.09 | 1.27 ± 0.15 | 1.56 ± 0.19 | 0.34 ± 0.04 | 12 ± 3.23 | 11.88 ± 3.25 | 0.69 ± 0.1 | 0.548 ± 0.028 | 0.142 ± 0.016 | 0.104 ± 0.008 | |
Mean (n = 154) | 8.22 ± 1.2 | 4.35 ± 0.73 | 3.56 ± 0.61 | 1.08 ± 0.23 | 0.48 ± 0.08 | 0.44 ± 0.12 | 0.43 ± 0.12 | 0.65 ± 0.12 | 1.26 ± 0.26 | 1.57 ± 0.23 | 0.34 ± 0.05 | 13.53 ± 3.41 | 13.7 ± 3.36 | 0.65 ± 0.12 | 0.528 ± 0.039 | 0.151 ± 0.024 | 0.113 ± 0.02 |
N | M | NH | Hd | π | K | Tajima’s d | Fu’s F | |
---|---|---|---|---|---|---|---|---|
American Lineage | 32 | 23 | 9 | 0.784 | 0.00474 | 7.067 | 0.829 | −0.314 |
CZ | 10 | 19 | 5 | 0.844 | 0.00556 | 8.289 | 1.097 | 0.512 |
HF | 9 | 9 | 3 | 0.417 | 0.00223 | 3.333 | 0.030 | 1.065 |
HG | 9 | 9 | 2 | 0.222 | 0.00015 | 0.222 | −1.088 | −1.190 |
TS | 4 | 1 | 2 | 0.5 | 0.00034 | 0.5 | −0.612 | −0.612 |
Eastern Lineage | 94 | 215 | 57 | 0.968 | 0.01247 | 20.101 | −1.762 * | −4.465 ** |
North China (Clade 1) | 40 | 54 | 20 | 0.913 | 0.00588 | 8.796 | −1.106 | −1.772 |
Ordos Basin (Clade 2) | 18 | 84 | 13 | 0.902 | 0.00803 | 11.98 | −1.762 * | −4.465 ** |
Tsaidam_bi (Clade 3) | 6 | 32 | 6 | 1 | 0.00898 | 13.4 | −0.278 | −0.224 |
Alxa area (Clade 4) | 8 | 53 | 8 | 1 | 0.01163 | 17.357 | −0.813 | −0.468 |
Tsaidam_p | 9 | 6 | 3 | 0.417 | 0.00089 | 1.333 | −1.728 ** | −1.943 ** |
QTP_p | 7 | 85 | 5 | 0.857 | 0.02036 | 30.381 | −0.725 | −0.725 |
Xinjiang_p | 4 | 9 | 4 | 1 | 0.00313 | 4.667 | −0.492 | −4.465 ** |
EL_p (Clade 5) | 21 | 94 | 10 | 0.733 | 0.00834 | 12.448 | −2.127 ** | −2.123 * |
EL_bisexual | 73 | 148 | 47 | 0.967 | 0.01097 | 16.373 | −1.589 * | −3.817 ** |
Western Lineage | 60 | 449 | 33 | 0.955 | 0.0430 | 64.25 | −1.187 | −0.457 |
QXC (Clade 6) | 7 | 4 | 4 | 0.714 | 0.00089 | 1.333 | −0.876 | −0.789 |
XH | 6 | 1 | 2 | 0.333 | 0.00022 | 0.333 | −1.084 | −0.950 |
YSH | 6 | 2 | 3 | 0.6 | 0.00045 | 0.667 | −1.132 | −1.155 |
LGC and GLC (Clade 7) | 9 | 337 | 9 | 1 | 0.08162 | 121.778 | −0.093 | 0.042 |
JYH, XH and YSH (Clade 8) | 19 | 6 | 7 | 0.819 | 0.00156 | 2.327 | 1.152 | 0.562 |
WL_p (Clade 9) | 23 | 114 | 11 | 0.83 | 0.01401 | 20.909 | −1.295 | 0.017 |
Source of Variation | d.f. | Sum of Square | Variance Components | Percentage of Variation (%) | |
---|---|---|---|---|---|
American Lineage | Among populations | 3 | 57.259 | 2.216 | 54.27 |
Within populations | 28 | 52.272 | 1.867 | 45.73 | |
Total | 31 | 109.531 | 4.083 | 100 | |
Eastern Lineage | Among groups | 6 | 450.397 | 5.506 | 47.49 |
Among populations within groups | 4 | 51.164 | 0.911 | 7.85 | |
Within populations | 81 | 419.395 | 5.178 | 44.66 | |
Total | 91 | 920.957 | 11.595 | 100 | |
Western Lineage | Among groups | 2 | 842.423 | 24.72492 | 52.78 |
Among populations within groups | 8 | 624.56 | 13.38003 | 28.56 | |
Within populations | 49 | 428.4 | 8.74286 | 18.66 | |
Total | 59 | 1895.383 | 46.8478 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, H.; Zheng, K.; Wang, W.; Zheng, M.; Zhang, Y.; Zhang, D. The Morphological Differentiation and Evolutionary Origins of Artemia in China. Diversity 2024, 16, 144. https://doi.org/10.3390/d16030144
Pang H, Zheng K, Wang W, Zheng M, Zhang Y, Zhang D. The Morphological Differentiation and Evolutionary Origins of Artemia in China. Diversity. 2024; 16(3):144. https://doi.org/10.3390/d16030144
Chicago/Turabian StylePang, Huizhong, Kaixuan Zheng, Wenbo Wang, Mingjuan Zheng, Yulong Zhang, and Daochuan Zhang. 2024. "The Morphological Differentiation and Evolutionary Origins of Artemia in China" Diversity 16, no. 3: 144. https://doi.org/10.3390/d16030144
APA StylePang, H., Zheng, K., Wang, W., Zheng, M., Zhang, Y., & Zhang, D. (2024). The Morphological Differentiation and Evolutionary Origins of Artemia in China. Diversity, 16(3), 144. https://doi.org/10.3390/d16030144