A Systematic Review of Population Monitoring Studies of Sea Turtles and Its Application to Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variables Recorded
2.2. Data Analyses
3. Results
3.1. Taxonomic Representation
3.2. Oceanic Regions
3.3. Conservation Status
3.4. Population Parameters
3.5. Population Trends
3.6. Field-Based Monitoring Approaches
3.7. Genetic Monitoring Approaches
4. Discussion
4.1. Taxonomic Representation
4.2. Oceanic Regions
4.3. Conservation Status
4.4. Population Parameters
4.5. Population Trends
4.6. Field-Based Monitoring
4.7. Genetic Monitoring
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kocak, D.M.; Hotaling, L. Introduction to the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) and the Seabed 2030 Initiative. Mar. Technol. Soc. J. 2021, 55, 1–147. [Google Scholar] [CrossRef]
- Thomson, A.I.; Archer, F.I.; Coleman, M.A.; Gajardo, G.; Goodall-Copestake, W.P.; Hoban, S.; Laikre, L.; Miller, A.D.; O’Brien, D.; Pérez-Espona, S.; et al. Charting a course for genetic diversity in the UN Decade of Ocean Science. Evol. Appl. 2021, 14, 1497–1518. [Google Scholar] [CrossRef] [PubMed]
- Halpern, B.S. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [PubMed]
- IUCN. The IUCN Red List of Threatened Species. Version 2021-3. 2023. Available online: https://www.iucnredlist.org (accessed on 8 February 2023).
- Liu, T.M. Unexpected threat from conservation to endangered species: Reflections from the front-line staff on sea turtle conservation. J. Environ. Plan. Manag. 2017, 60, 2255–2271. [Google Scholar] [CrossRef]
- Wildermann, N.; Critchell, K.; Fuentes, M.M.P.B.; Limpus, C.J.; Wolanski, E.; Hamann, M. Does behaviour affect the dispersal of flatback post-hatchlings in the Great Barrier Reef? R. Soc. Open. Sci. 2017, 4, 170164. [Google Scholar] [CrossRef]
- Tomás, J.; Formia, Á.; Fernández, M. Occurrence and genetic analysis of a Kemp’s Ridley sea turtle (Lepidochelys kempii) in the Mediterranean Sea. Scientia 2003, 67, 367–369. [Google Scholar] [CrossRef]
- Wallace, B.P.; DiMatteo, A.D.; Bolten, A.B.; Chaloupka, M.Y.; Hutchinson, B.J.; Abreu-Grobois, F.A.; Mortimer, J.A.; Seminoff, J.A.; Amorocho, D.; Bjorndal, K.A.; et al. Global conservation priorities for marine turtles. PLoS ONE 2011, 6, e24510. [Google Scholar] [CrossRef]
- Allard, M.W.; Miyamoto, M.M.; Bjorndal, K.A.; Bolten, A.B.; Bowen, B.W. Support for natal homing in Green turtles from mitochondrial DNA sequences. Copeia 1994, 1994, 34–41. [Google Scholar] [CrossRef]
- Bass, A.L.; Good, D.A.; Bjorndal, K.A.; Richardson, J.I.; Hillis, Z.-M.; Horrocks, J.A.; Bowen, B.W. Testing models of female reproductive migratory behavior and population structure in the Caribbean hawksbill turtle, Eretmochelys imbricata, with mtDNA sequences. Mol. Ecol. 1996, 5, 321–328. [Google Scholar] [CrossRef]
- Pendoley, K.L.; Bell, C.D.; McCracken, R.; Ball, K.R.; Sherborne, J.; Oates, J.E.; Becker, P.; Vitenbergs, A.; Whittock, P.A. Reproductive biology of the flatback turtle Natator depressus in Western Australia. Endanger. Species Res. 2014, 23, 115–123. [Google Scholar] [CrossRef]
- Briscoe, D.K.; Parker, D.M.; Balazs, G.H.; Kurita, M.; Saito, T.; Okamoto, H.; Rice, M.; Polovina, J.J.; Crowder, L.B. Active dispersal in loggerhead sea turtles (Caretta caretta) during the “lost years”. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160690. [Google Scholar] [CrossRef]
- Wallace, B.P.; Lewison, R.L.; McDonald, S.L.; McDonald, R.K.; Kot, C.Y.; Kelez, S.; Bjorkland, R.K.; Finkbeiner, E.M.; Helmbrecht, S.; Crowder, L.B. Global patterns of marine turtle bycatch. Conserv. Lett. 2010, 3, 131–142. [Google Scholar] [CrossRef]
- Nahill, B. Sea Turtle Research and Conservation: Lessons From Working in the Field, 3rd ed.; Elsevier Academic Press: London, UK, 2021. [Google Scholar]
- Humber, F.; Godley, B.J.; Broderick, A.C. So excellent a fishe: A global overview of legal marine turtle fisheries. Divers. Distrib. 2014, 20, 579–590. [Google Scholar] [CrossRef]
- Brost, B.; Witherington, B.; Meylan, A.; Leone, E.; Ehrhart, L.; Bagley, D. Sea turtle hatchling production from Florida (USA) beaches, 2002–2012, with recommendations for analyzing hatching success. Endanger. Species Res. 2015, 27, 53–68. [Google Scholar] [CrossRef]
- Laloë, J.O.; Cozens, J.; Renom, B.; Taxonera, A.; Hays, G.C. Climate change and temperature-linked hatchling mortality at a globally important sea turtle nesting site. Glob. Chang. Biol. 2017, 23, 4922–4931. [Google Scholar] [CrossRef] [PubMed]
- Environment Canada. CITES Identification Guide—Turtles and Tortoises: Guide to the Identification of Turtles and Tortoises Species Controlled Under the Convention on International Trade in Endangered Species of Wild Fauna and Flora; Environment Canada and PROFEPA (SEMARNAP); Environment Canada and PROFEPA (SEMARNAP): Ottawa, ON, Canada, 1999.
- Bowen, B.W.; Meylan, A.B.; Ross, J.P.; Limpus, C.J.; Balazs, G.H.; Avise, J.C. Global population structure and natural history of the Green turtle (Chelonia mydas) in terms of matriarchal phylogeny. Evolution 1992, 46, 865–881. [Google Scholar] [CrossRef] [PubMed]
- Witt, M.J.; Broderick, A.C.; Coyne, M.S.; Formia, A.; Ngouessono, S.; Parnell, R.J.; Sounguet, G.-P.; Godley, B.J. Satellite tracking highlights difficulties in the design of effective protected areas for Critically Endangered leatherback turtles Dermochelys coriacea during the inter-nesting period. Oryx 2008, 42, 296–300. [Google Scholar] [CrossRef]
- Shamblin, B.M.; Bolten, A.B.; Abreu-Grobois, F.A.; Bjorndal, K.A.; Cardona, L.; Carreras, C.; Clusa, M.; Monzón-Argüello, C.; Nairn, C.J.; Nielsen, J.T.; et al. Geographic Patterns of genetic variation in a broadly distributed marine vertebrate: New insights into Loggerhead turtle stock structure from expanded mitochondrial DNA sequences. PLoS ONE 2014, 9, e85956. [Google Scholar] [CrossRef] [PubMed]
- Godley, B.J.; Richardson, S.; Broderick, A.C.; Coyne, M.S.; Glen, F.; Hays, G.C. Long-term satellite telemetry of the movements and habitat utilization by green turtles in the Mediterranean. Ecography 2002, 25, 352–362. [Google Scholar] [CrossRef]
- Jeffers, V.F.; Godley, B.J. Satellite tracking in sea turtles: How do we find our way to the conservation dividends? Biol. Conserv. 2016, 199, 172–184. [Google Scholar] [CrossRef]
- Calmanovici, B.; Waayers, D.; Reisser, J.; Clifton, J.; Proietti, M. I3S Pattern as a mark-recapture tool to identify captured and free-swimming sea turtles: An assessment. Mar. Ecol. Prog. Ser. 2018, 589, 263–268. [Google Scholar] [CrossRef]
- Broderick, A.C.; Glen, F.; Godley, B.J.; Hays, G.C. Estimating the number of green and loggerhead turtles nesting annually in the Mediterranean. Oryx 2002, 36, 227–235. [Google Scholar] [CrossRef]
- Bourjea, J.; Dalleau, M.; Derville, S.; Beudard, F. Seasonality, abundance, and fifteen-year trend in green turtle nesting activity at Itsamia, Moheli, Comoros. Endanger. Species Res. 2015, 27, 265–276. [Google Scholar] [CrossRef]
- Schultz, E.A. Genetic Analysis, Movement, and Nesting Patterns of the Green Sea Turtle (Chelonia mydas) in St. Croix, Virgin Islands (USA): A Regional Analysis for the Caribbean. Master’s Thesis, Savannah State University, Savannah, GA, USA, 2016. [Google Scholar]
- Barbanti, A.; Martin, C.; Blumenthal, J.M.; Boyle, J.; Broderick, A.C.; Collyer, L.; Ebanks-Petrie, G.; Godley, B.J.; Mustin, W.; Ordóñez, V.; et al. How many came home? Evaluating ex situ conservation of green turtles in the Cayman Islands. Mol. Ecol. 2019, 28, 1637–1651. [Google Scholar] [CrossRef]
- Hof, C.A.M.; Smallwood, E.; Meager, J.; Bell, I.P. First citizen-science population abundance and growth rate estimates for green sea turtles Chelonia mydas foraging in the northern Great Barrier Reef, Australia. Mar. Ecol. Prog. Ser. 2017, 574, 181–191. [Google Scholar] [CrossRef]
- Silva, B.M.G.; Bugoni, L.; Almeida, B.A.D.L.; Giffoni, B.B.; Alvarenga, F.S.; Brondizio, L.S.; Becker, J.H. Long-term trends in abundance of green sea turtles (Chelonia mydas) assessed by non-lethal capture rates in a coastal fishery. Ecol. Indic. 2017, 79, 254–264. [Google Scholar] [CrossRef]
- Moore, J.E.; Cox, T.M.; Lewison, R.L.; Read, A.J.; Bjorkland, R.; McDonald, S.L.; Crowder, L.B.; Aruna, E.; Ayissi, I.; Espeut, P.; et al. An interview-based approach to assess marine mammal and sea turtle captures in artisanal fisheries. Biol. Conserv. 2010, 143, 795–805. [Google Scholar] [CrossRef]
- Schwartz, M.K.; Luikart, G.; Waples, R.S. Genetic characterization as a promising tool for conservation and management. TREE 2007, 22, 25–33. [Google Scholar] [CrossRef]
- Dutton, P.H.; Roden, S.E.; Stewart, K.R.; LaCasella, E.; Tiwari, M.; Formia, A.; Thomé, J.C.; Livingstone, S.R.; Eckert, S.; Chacon-Chaverri, D.; et al. Population stock structure of leatherback turtles (Dermochelys coriacea) in the Atlantic revealed using mtDNA and microsatellite markers. Conserv. Genet. 2013, 14, 625–636. [Google Scholar] [CrossRef]
- Kelez, S.; Velez-Zuazo, X.; Pacheco, A.S. First record of hybridization between green Chelonia mydas and hawksbill Eretmochelys imbricata sea turtles in the Southeast Pacific. PeerJ 2016, 4, e1712. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, H.R.; Figueroa, D.F.; George, J.A. Mitochondrial genomes and genetic structure of the Kemp’s ridley sea turtle (Lepidochelys kempii). Ecol. Evol. 2020, 10, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Dutton, P.H.; LeRoux, R.A.; LaCasella, E.L.; Seminoff, J.A.; Eguchi, T.; Dutton, D.L. Genetic analysis and satellite tracking reveal origin of the green turtles in San Diego Bay. Mar. Biol. 2019, 166, 3. [Google Scholar] [CrossRef]
- Pérez-Espona, S.; ConGRESS Consortium. Conservation genetics in the European Union—Biases, gaps and future directions. Biol. Conserv. 2017, 209, 130–136. [Google Scholar] [CrossRef]
- Tedeschi, J.N.; Mitchell, N.J.; Berry, O.; Whiting, S.; Meekan, M.; Kennington, W.J. Reconstructed paternal genotypes reveal variable rates of multiple paternity at three rookeries of loggerhead sea turtles (Caretta caretta) in Western Australia. Aust. J. Zool. 2015, 62, 454–462. [Google Scholar] [CrossRef]
- Bell, I.P.; Meager, J.J.; Eguchi, T.; Dobbs, K.A.; Miller, J.D.; Madden Hof, C.A. Twenty-eight years of decline: Nesting population demographics and trajectory of the north-east Queensland endangered hawksbill turtle (Eretmochelys imbricata). Biol. Conserv. 2020, 241, 108376. [Google Scholar] [CrossRef]
- Miloslavich, P.; Díaz, J.M.; Klein, E.; Alvarado, J.J.; Díaz, C.; Gobin, J.; Escobar-Briones, E.; Cruz-Motta, J.J.; Weil, E.; Cortés, J.; et al. Marine biodiversity in the Caribbean: Regional estimates and distribution patterns. PLoS ONE 2010, 5, e11916. [Google Scholar] [CrossRef]
- Mansfield, K.L.; Mendilaharsu, M.L.; Putman, N.F.; dei Marcovaldi, M.A.; Sacco, A.E.; Lopez, G.; Pires, T.; Swimmer, Y. First satellite tracks of South Atlantic sea turtle “lost years”: Seasonal variation in trans-equatorial movement. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171730. [Google Scholar] [CrossRef]
- Ceriani, S.A.; Casale, P.; Brost, M.; Leone, E.H.; Witherington, B.E. Conservation implications of sea turtle nesting trends: Elusive recovery of a globally important loggerhead population. Ecosphere 2019, 10, e02936. [Google Scholar] [CrossRef]
- Pilcher, N. Population structure and growth of immature Green turtles at Mantanani, Sabah, Malaysia. J. Herpetol. 2010, 44, 168–171. [Google Scholar] [CrossRef]
- Betts, J.; Young, R.P.; Hilton-Taylor, C.; Hoffmann, M.; Rodríguez, J.P.; Stuart, S.N.; Milner-Gulland, E.J. A framework for evaluating the impact of IUCN Red List of threatened species. Conserv. Biol. 2020, 24, 632–643. [Google Scholar] [CrossRef]
- Adamo, M.; Sousa, R.; Wipf, S.; Correia, R.A.; Lumia, A.; Mucciarelli, M.; Mammola, S. Dimension and impact of biases in funding for species and habitat conservation. Biol. Conserv. 2022, 272, 109636. [Google Scholar] [CrossRef]
- The Laúd OPO Network. Enhanced, coordinated conservation efforts required to avoid extinction of critically endangered Eastern Pacific leatherback turtles. Sci. Rep. 2020, 10, 4772. [Google Scholar] [CrossRef]
- Witmer, G.W. Wildlife population characterization: Some practical considerations. Wildl. Res. 2005, 32, 259–263. [Google Scholar] [CrossRef]
- Plot, V.; de Thoisy, B.; Blanc, S.; Kelle, L.; Lavergne, A.; Roger-Bérubet, H.; Tremblay, Y.; Fossette, S.; Georges, J.-Y. Reproductive synchrony in a recovering bottlenecked sea turtle population. J. Anim. Ecol. 2012, 82, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Mestre, F.; Bragança, M.P.; Nunes, A.; dos Santos, M.E. Satellite tracking of sea turtles released after prolonged captivity periods. Mar. Biol. Res. 2014, 10, 996–1006. [Google Scholar] [CrossRef]
- Abalo-Morla, S.; Marco, A.; Tomás, J.; Revuelta, O.; Abella, E.; Marco, V.; Crespo-Picazo, J.L.; Fernández, C.; Valdés, F.; Arroyo, M.C.; et al. Survival and dispersal routes of head-started loggerhead sea turtle (Caretta caretta) post-hatchlings in the Mediterranean Sea. Mar. Biol. 2018, 165, 51. [Google Scholar] [CrossRef]
- Dethmers, K.E.M.; Broderick, D.; Moritz, C.; Fitzsimmons, N.N.; Limpus, C.L.; Lavery, S.; Whiting, S.; Guinea, M.; Prince, R.I.T.; Kennett, R. The genetic structure of Australasian green turtles (Chelonia mydas): Exploring the geographical scale of genetic exchange. Mol. Ecol. 2006, 15, 3931–3946. [Google Scholar] [CrossRef]
- Velez-Zuazo, X.; Ramos, W.D.; van Dam, R.P.; Diez, C.E.; Abreu-Grobois, A.; McMillan, W.O. Dispersal, recruitment and migratory behaviour in a hawskbill sea turtle aggregation. Mol. Ecol. 2008, 17, 839–853. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Chen, M. Genetic structure and diversity of green sea turtle (Chelonia mydas) from South China Sea inferred by mtDNA control region sequence. Biochem. Syst. Ecol. 2015, 60, 95–98. [Google Scholar] [CrossRef]
- Hays, G.C.; Hawkes, L.A. Satellite tracking sea turtles: Opportunities and challenges to address key questions. Front. Mar. Sci. 2018, 5, 432. [Google Scholar] [CrossRef]
- Chambault, P.; de Thoisy, B.; Huguin, M.; Martin, J.; Bonola, M.; Etienne, D.; Gresser, J.; Hiélard, G.; Mailles, J.; Védie, F.; et al. Connecting paths between juvenile and adult habitats in the Atlantic green turtle using genetics and satellite tracking. Ecol. Evol. 2018, 8, 12790–12802. [Google Scholar] [CrossRef] [PubMed]
- Warden, M.L.; Haas, H.L.; Richards, P.M.; Rose, K.A.; Hatch, J.M. Characterization trends in sea turtle populations: Walk or fly? Endanger. Species Res. 2017, 34, 323–337. [Google Scholar] [CrossRef]
- Kapurusinghe, T. Sustainable Use of Sea Turtles Benefiting the Local Community in Rekawa Sanctuary, Sri Lanka. In Sea Turtle Research and Conservation, 1st ed.; Nahill, B., Ed.; Elsevier Academic Press: London, UK, 2021; pp. 3–13. [Google Scholar] [CrossRef]
- Blechschmidt, J.; Wittmann, M.J.; Blüml, C. Climate change and Green sea turtle sex ratio—Preventing possible extinction. Genes 2020, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, D.; Girondot, M.; Berzins, R.; Chevalier, J.; de Thoisy, B.; Fretey, J.; Kelle, L.; Lebreton, J.D. Survival and breeding interval of an endangered marine vertebrate, the leatherback turtle Dermochelys coriacea, in French Guiana. Endanger. Species Res. 2020, 41, 153–165. [Google Scholar] [CrossRef]
- Jarne, P.; Lagoda, P.J.L. Microsatellites, from molecules to populations and back. TREE 1996, 11, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Stewart, K.R.; Dutton, P.H. Breeding sex ratios in adult leatherback turtles (Dermochelys coriacea) may compensate for female-biased hatchling sex ratios. PLoS ONE 2014, 9, e88138. [Google Scholar] [CrossRef]
- Loisier, A.; Savelli, M.-P.; Arnal, V.; Claro, F.; Gambaiani, D.; Sénégas, J.B.; Cesarini, C.; Sacchi, J.; Miaud, C.; Montgelard, C. Genetic composition, origin and conservation of loggerhead sea turtles (Caretta caretta) frequenting the French Mediterranean coasts. Mar. Biol. 2021, 168, 52. [Google Scholar] [CrossRef]
- Naro-Maciel, E.; Gaughran, S.J.; Putman, N.F.; Amato, G.; Arengo, F.; Dutton, P.H.; McFadden, K.W.; Vintinner, E.C.; Sterling, E.J. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: A focus on mtDNA and dispersal modelling. J. R. Soc. Interface 2014, 11, 20130888. [Google Scholar] [CrossRef]
- Lee, P.L.; Schofield, G.; Haughey, R.I.; Mazaris, A.D.; Hays, G.C. A review of patterns of multiple paternity across sea turtle rookeries. Adv. Mar. Biol. 2018, 79, 1–31. [Google Scholar]
- Rees, A.; Alfaro-Shigueto, J.; Barata, P.; Bjorndal, K.A.; Bolten, A.B.; Bourjea, J.; Broderick, A.C.; Campbell, L.; Cardona, L.; Carreras, C.; et al. Are we working towards global research priorities for management and conservation of sea turtles? Endanger. Species Res. 2016, 31, 337–382. [Google Scholar] [CrossRef]
- Roden, S.E.; Morin, P.A.; Frey, A.; Balazs, G.H.; Zarate, P.; Cheng, I.J.; Dutton, P.H. Green turtle population structure in the Pacific: New insights from single nucleotide polymorphisms and microsatellites. Endanger. Species Res. 2013, 20, 227–234. [Google Scholar] [CrossRef]
- Banerjee, S.M.; Komoroske, L.M.; Frey, A.; Hancock-Hanser, B.; Morin, P.A.; Archer, F.I.; Roden, S.; Gaos, A.; Liles, M.J.; Dutton, P.H. Single nucleotide polymorphism markers for genotyping hawksbill turtles (Eretmochelys imbricata). Conserv. Genet. Resour. 2020, 12, 353–356. [Google Scholar] [CrossRef]
- Puckett, E.E. Variability in total project and per sample genotyping costs under varying study designs including with microsatellites or SNPs to answer conservation genetic questions. Conserv. Genet. Resour. 2017, 9, 289–304. [Google Scholar] [CrossRef]
- Natesh, M.; Taylor, R.W.; Truelove, N.K.; Hadly, E.A.; Palumbi, S.R.; Petrov, D.A.; Ramakrishnan, U. Empowering conservation practice with efficient and economical genotyping from poor quality samples. Methods Ecol. Evol. 2019, 10, 853–859. [Google Scholar] [CrossRef] [PubMed]
Variable | Details |
---|---|
Species Name | Common and scientific name of all the sea turtle species included in the study |
Population status | Population trend is increasing, decreasing, or stable |
Publication year | Year of publication of the study |
Publication Details | Title and authors of the study |
Locations | 257 unique locations categorized by country and oceanic region. These locations varied between studies, as some studies focused on large oceanic areas, and others on smaller gulfs/seas, or specific coastlines. The oceanic regions were defined as northwest, northeast, southwest, and southeast sections of the Atlantic, Pacific, and Indian oceans. Because of the long-distance migration of sea turtles, several studies represented monitoring of sea turtles across entire oceans, and this was recorded as “entire ocean”. When the study was on a particular sea turtle population, the country (or countries) referred to as part of the sampling area was recorded. |
Population parameters | Divided into 12 categories: abundance (current/historic), gene flow, genetic diversity, habitat range, hybridization, migration, multiple paternity, origin, phylogeny, population structure, sex ratio, and survivability. |
Type of monitoring | Field-based monitoring methods versus genetic monitoring methods. |
IUCN information | Conservation status; current status, previous status, dates of all assessments, range of the species, and list of threats to the species. Data extracted from the IUCN Red List of Threatened Species website. |
Field-based monitoring | Field-based methods for population monitoring were categorized into 24 unique methods. The top five most commonly used approaches used for time-series analyses were: satellite (satellite tracking of individuals), nest surveys (clutch and egg counts), tagging (capture-mark-recaptures of tagged individuals), existing/historic data (reanalysis of previously published data to establish current population trends), and fishery data (reports from sightings and accidental bycatch). The duration of the field-based monitoring studies was also recorded (i.e., the total observation time used for analysis in these studies). |
Genetic markers | Genetic markers used in genetic monitoring studies. These included: microsatellites, mitochondrial DNA (control region, cytochrome b, cox1, minisatellite, and mitogenome), single nucleotide polymorphisms (SNPs), nuclear sequences (nDNA), and other genetic markers (major histocompatibility complex, transfer RNA, and banded krait minor satellite). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendrix, H.; Pérez-Espona, S. A Systematic Review of Population Monitoring Studies of Sea Turtles and Its Application to Conservation. Diversity 2024, 16, 177. https://doi.org/10.3390/d16030177
Hendrix H, Pérez-Espona S. A Systematic Review of Population Monitoring Studies of Sea Turtles and Its Application to Conservation. Diversity. 2024; 16(3):177. https://doi.org/10.3390/d16030177
Chicago/Turabian StyleHendrix, Haley, and Sílvia Pérez-Espona. 2024. "A Systematic Review of Population Monitoring Studies of Sea Turtles and Its Application to Conservation" Diversity 16, no. 3: 177. https://doi.org/10.3390/d16030177
APA StyleHendrix, H., & Pérez-Espona, S. (2024). A Systematic Review of Population Monitoring Studies of Sea Turtles and Its Application to Conservation. Diversity, 16(3), 177. https://doi.org/10.3390/d16030177