Variations in Soil Seed Banks in Sedge Peatlands across an Altitude Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Aboveground Vegetation Survey
2.2. Germination of Soil Seed Bank
2.3. Soil Properties Measurement
2.4. Statistical Analysis
3. Results
3.1. Climate and Soil Property Change with the Altitude
3.2. Vegetation and Soil Seed Bank Change with the Altitude
3.3. Relationship between Climate, Soil Property, Aboveground Vegetation, and Soil Seed Bank
3.4. Effects of Climate, Soil Property, Aboveground Vegetation on Soil Seed Bank
4. Discussion
4.1. Variations in Soil Seed Bank Richness in Sedge Peatlands across the Altitude Gradient
4.2. Variations in Soil Seed Bank Density in Sedge Peatlands along the Altitude Gradient
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Middleton, B.; McKee, K. Soil warming alters seed-bank responses across the geographic range of freshwater Taxodium distichum (Cupressaceae) swamps. Am. J. Bot. 2011, 98, 1943–1955. [Google Scholar] [CrossRef]
- Ooi, M.K.J. Seed bank persistence and climate change. Seed Sci. Res. 2012, 22, S53–S60. [Google Scholar] [CrossRef]
- Ma, M.; Collins, S.L.; Du, G. Direct and indirect effects of temperature and precipitation on alpine seed banks in the Tibetan Plateau. Ecol. Appl. 2020, 30, e02096. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, G.; Zhao, M.; Wang, M.; Liu, B.; Jiang, M. How soil salinization and alkalinization drive vegetation change in salt-affected inland wetlands. Plant Soil 2022, 480, 571–581. [Google Scholar] [CrossRef]
- Kharkwal, G.; Mehrotra, P.; Rawat, Y.S.; Pangtey, Y.P.S. Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India. Curr. Sci. 2005, 89, 873–878. [Google Scholar]
- Sharma, C.M.; Suyal, S.; Gairola, S.; Ghildiyal, S.K. Species richness and diversity along an altitudinal gradient in moist temperate forest of Garhwal Himalaya. Am. J. Sci. 2009, 5, 119–128. [Google Scholar]
- Funes, G.; Basconcelo, S.; Díaz, S.; Cabido, M. Seed bank dynamics in tall-tussock grasslands along an altitudinal gradient. J. Veg. Sci. 2003, 14, 253–258. [Google Scholar] [CrossRef]
- Espinosa, C.I.; Luzuriaga, A.L.; De La Cruz, M.; Montero, M.; Escudero, A. Co-occurring grazing and climate stressors have different effects on the total seed bank when compared to the persistent seed bank. J. Veg. Sci. 2013, 24, 1098–1107. [Google Scholar] [CrossRef]
- Noroozi, S.; Alizadeh, H.; Mashhadi, H.R. Temperature influences postdispersal predation of weed seeds. Weed Biol. Manag. 2016, 16, 24–33. [Google Scholar] [CrossRef]
- Blaney, C.S.; Kotanen, P.M. Effects of fungal pathogens on seeds of native and exotic plants: A test using congeneric pairs. J. Appl. Ecol. 2001, 38, 1104–1113. [Google Scholar] [CrossRef]
- Murdoch, A.J.; Ellis, R.M. Dormancy, viability and longevity. In Seeds, the Ecology of Regeneration in Plant Communities; Fenner, M., Ed.; CABI: London, UK, 2000; pp. 183–214. [Google Scholar]
- Luo, X.; Cao, M.; Zhang, M.; Song, X.; Li, J.; Nakamura, A.; Kitching, R. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China. Plant Divers. 2017, 39, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.; Levassor, C.; Peco, B. Seasonal dynamics of Mediterranean pasture seed banks along environmental gradients. J. Biogeogr. 1997, 24, 177–195. [Google Scholar] [CrossRef]
- Ma, M.; Zhou, X.; Wang, G.; Ma, Z.; Du, G. Seasonal dynamics in alpine meadow seed banks along an altitudinal gradient on the Tibetan Plateau. Plant Soil 2010, 336, 291–302. [Google Scholar] [CrossRef]
- An, H.; Zhao, Y.; Ma, M. Precipitation controls seed bank size and its role in alpine meadow community regeneration with increasing altitude. Glob. Chang. Biol. 2020, 26, 5767–5777. [Google Scholar] [CrossRef] [PubMed]
- Jalili, A.; Hamzeh’ee, B.; Asri, Y.; Shirvany, A.; Yazdani, S.; Khoshnevis, M.; Zarrinkamar, F.; Ghahramani, M.-A.; Safavi, R.; Shaw, S.; et al. Soil seed banks in the Arasbaran Protected Area of Iran and their significance for conservation management. Biol. Conserv. 2003, 109, 425–431. [Google Scholar] [CrossRef]
- Wang, M.; Han, Y.; Xu, Z.; Wang, S.; Jiang, M.; Wang, G. Hummock-hollow microtopography affects soil enzyme activity by creating environmental heterogeneity in the sedge-dominated peatlands of the Changbai Mountains, China. Ecol. Indic. 2021, 121, 107187. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Wang, G.; Jiang, M. Soil seed banks and restoration potential of tussock sedge meadows after farming in Changbai Mountain, China. Mar. Freshw. Res. 2020, 71, 1099–1106. [Google Scholar] [CrossRef]
- Benavides, J.C.; Vitt, D.H.; Cooper, D.J. The high-elevation peatlands of the northern Andes, Colombia. Plants 2023, 12, 955. [Google Scholar] [CrossRef]
- Welker, J.M.; Jónsdóttir, I.S.; Fahnestock, J.T. Leaf isotopic (δ 13 C and δ 15 N) and nitrogen contents of Carex plants along the Eurasian Coastal Arctic: Results from the Northeast Passage expedition. Polar Biol. 2003, 27, 29–37. [Google Scholar] [CrossRef]
- Wang, M.; Moore, T.R.; Talbot, J.; Richard, P.J.H. The cascade of C:N:P stoichiometry in an ombrotrophic peatland: From plants to peat. Environ. Res. Lett. 2014, 9, 024003. [Google Scholar] [CrossRef]
- Wang, M.; Wang, G.; Wang, S.; Jiang, M. Structure and Richness of Carex meyeriana Tussocksin Peatlands of Northeastern China. Wetlands 2018, 38, 15–23. [Google Scholar] [CrossRef]
- Yi, F. Wild Vascular Plants in Wetlands of Northeast China; Science Press: Beijing, China, 2008. [Google Scholar]
- Granot, I.; Belmaker, J. Niche breadth and species richness: Correlation strength, scale and mechanisms. Glob. Ecol. Biogeogr. 2020, 29, 159–170. [Google Scholar] [CrossRef]
- Kalembasa, S.J.; Jenkinson, D.S. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J. Sci. Food Agric. 1973, 24, 1085–1090. [Google Scholar] [CrossRef]
- Jackson, R.B.; Anderson, L.J.; Pockman, W.T. Measuring Water Availability and Uptake in Ecosystem Studies. In Methods in Ecosystem Science; Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W., Eds.; Springer: New York, NY, USA, 2000; pp. 199–214. [Google Scholar] [CrossRef]
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Zhou, Q.; Gibson, C.E.; Zhu, Y. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 2001, 42, 221–225. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Wagner, H.H. Community Ecology Package Version 2.6-4. 2022. Available online: https://cran.rproject.org/web/packages/vegan/vegan.pdf (accessed on 21 December 2023).
- Wei, T.Y.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix. R Package Version 0.92. 2021. Available online: https://cran.rproject.org/web/packages/corrplot/corrplot.pdf (accessed on 23 December 2023).
- Sanchez, G.; Trinchera, L.; Russolillo, G. Plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R Package Version 0.5.0. 2023. Available online: https://CRAN.R-project.org/package=plspm (accessed on 27 December 2023).
- Piao, S.; Liu, Z.; Wang, T.; Peng, S.; Ciais, P.; Huang, M.; Ahlstrom, A.; Burkhart, J.F.; Chevallier, F.; Janssens, I.A.; et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 2017, 7, 359–363. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Wang, S.; Jiang, M.; Wang, G. The type of soil amendment during farming affects the restorability of peatlands. Ecol. Eng. 2023, 189, 106916. [Google Scholar] [CrossRef]
- Kirschbaum, M. The temperature dependence of organic-matter decomposition—Still a topic of debate. Soil Biol. Biochem. 2006, 38, 2510–2518. [Google Scholar] [CrossRef]
- Lawrence, C.R.; Neff, J.C.; Schimel, J.P. Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment. Soil Biol. Biochem. 2009, 41, 1923–1934. [Google Scholar] [CrossRef]
- Wallenstein, M.; Allison, S.D.; Ernakovich, J.; Steinweg, J.M.; Sinsabaugh, R. Controls on the temperature sensitivity of soil enzymes: A key driver of in situ enzyme activity rates. Soil Enzymol. 2011, 22, 245–258. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef] [PubMed]
- Peet, R.K.; Fridley, J.D.; Gramling, J.M. Variation in species richness and species pool size across a pH gradient in forests of the southern Blue Ridge Mountains. Folia Geobot. 2003, 38, 391–401. [Google Scholar] [CrossRef]
- Ma, M.; Dalling, J.W.; Ma, Z.; Zhou, X. Soil environmental factors drive seed density across vegetation types on the Tibetan Plateau. Plant Soil 2017, 419, 349–361. [Google Scholar] [CrossRef]
- Fay, P.A.; Prober, S.M.; Harpole, W.S.; Knops, J.M.H.; Bakker, J.D.; Borer, E.T.; Lind, E.M.; MacDougall, A.S.; Seabloom, E.W.; Wragg, P.D.; et al. Grassland productivity limited by multiple nutrients. Nat. Plants 2015, 1, 15080. [Google Scholar] [CrossRef]
- Xiong, J.; Lin, C.; Ma, R.; Zheng, G. The total P estimation with hyper-spectrum—A novel insight into different P fractions. Catena 2020, 187, 104309. [Google Scholar] [CrossRef]
- Damman, A.W.H. Regulation of Nitrogen Removal and Retention in Sphagnum bogs and Other Peatlands. Oikos 1988, 51, 291. [Google Scholar] [CrossRef]
- Clarke, E.; Baldwin, A.H. Responses of wetland plants to ammonia and water level. Ecol. Eng. 2002, 18, 257–264. [Google Scholar] [CrossRef]
- Elo, M.; Alahuhta, J.; Kanninen, A.; Meissner, K.K.; Seppälä, K.; Mönkkönen, M. Environmental Characteristics and Anthropogenic Impact Jointly Modify Aquatic Macrophyte Species Diversity. Front. Plant Sci. 2018, 9, 1001. [Google Scholar] [CrossRef]
- Das Gupta, S.; Pinno, B.D. Drivers of understory species richness in reconstructed boreal ecosystems: A structural equation modeling analysis. Sci. Rep. 2020, 10, 11555. [Google Scholar] [CrossRef]
- Hill, N.M.; Kloet, S.P.V. Longevity of Experimentally Buried Seed in Vaccinium: Relationship to Climate, Reproductive Factors and Natural Seed Banks. J. Ecol. 2005, 93, 1167–1176. [Google Scholar] [CrossRef]
- Pakeman, R.J.; Cummins, R.P.; Miller, G.R.; Roy, D.B. Potential climatic control of seedbank density. Seed Sci. Res. 1999, 9, 101–110. [Google Scholar] [CrossRef]
- Miller, G.R.; Cummins, R.P. Role of Buried Viable Seeds in the Recolonization of Disturbed Ground by Heather (Calluna vulgaris [L.] Hull) in the Cairngorm Mountains, Scotland, U.K. Arct. Alp. Res. 1987, 19, 396. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Bahuguna, R.N.; Djanaguiraman, M.; Gamuyao, R.; Prasad, P.V.V.; Craufurd, P.Q. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants. Front. Plant Sci. 2016, 7, 913. [Google Scholar] [CrossRef] [PubMed]
- Hegland, S.J.; Nielsen, A.; Lázaro, A.; Bjerknes, A.; Totland, Ø. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 2009, 12, 184–195. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.L.; Dong, Y.M.; Wang, S.Z.; Liu, B.; Jiang, M.; Wang, G.D. Plant species diversity of Carex peat mire in Changbai Mountains, China. Chin. J. Appl. Ecol. 2021, 32, 2138–2146. [Google Scholar] [CrossRef]
- Gerritsen, J.; Greening, H.S. Marsh Seed Banks of the Okefenokee Swamp: Effects of Hydrologic Regime and Nutrients. Ecology 1989, 70, 750–763. [Google Scholar] [CrossRef]
- Gao, S.; Wang, J.; Knops, J.M.H.; Wang, J. Nitrogen addition increases sexual reproduction and improves seedling growth in the perennial rhizomatous grass Leymus chinensis. BMC Plant Biol. 2020, 20, 106. [Google Scholar] [CrossRef]
- Johnson, S. Effects of water level and phosphorus enrichment on seedling emergence from marsh seed banks collected from northern Belize. Aquat. Bot. 2004, 79, 311–323. [Google Scholar] [CrossRef]
- Ket, W.A.; Schubauer-Berigan, J.P.; Craft, C.B. Effects of five years of nitrogen and phosphorus additions on a Zizaniopsis miliacea tidal freshwater marsh. Aquat. Bot. 2011, 95, 17–23. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Pastor, J.; Janssens, J.A.; Chapin, C.; Malterer, T.J. Multiple limiting gradients in peatlands: A call for a new paradigm. Wetlands 1996, 16, 45–65. [Google Scholar] [CrossRef]
- Chapin, C.T.; Bridgham, S.D.; Pastor, J. pH and nutrient effects on above-ground net primary production in a Minnesota, USA bog and fen. Wetlands 2004, 24, 186–201. [Google Scholar] [CrossRef]
Site Name | Site Location | Altitude | MAT | MAP | SWC | pH | SOC | TN | TP | AP | NH4+-N | NO3−-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(m a.s.l) | (°C) | (mm) | (%) | (%) | (mg/g) | (mg/g) | (mg/kg) | (mg/kg) | (mg/kg) | |||
E327 | 44°6′1.73″ N, 127°33′33″ E | 327 | 3.34 | 561.25 | 82.36 ± 0.46 c | 5.94 ± 0.13 a | 31.34 ± 0.22 b | 20.30 ± 0.79 ab | 1.28 ± 0.07 b | 7.08 ± 2.19 bc | 53.84 ± 0.96 bc | 1.43 ± 0.48 b |
E540 | 43°16′4.31″ N, 128°38′29″ E | 540 | 3.25 | 564.42 | 85.43 ± 0.44 b | 6.01 ± 0.12 a | 38.89 ± 1.31 a | 21.01 ± 0.51 a | 1.65 ± 0.01 a | 7.42 ± 0.08 bc | 42.63 ± 5.20 bcd | 2.26 ± 0.03 a |
E615 | 42°20′ N, 126°22′ E | 615 | 4.00 | 823.00 | 82.98 ± 0.99 c | 5.77 ± 0.33 ab | 31.13 ± 2.86 b | 15.50 ± 5.05 b | 1.25 ± 0.04 b | 10.13 ± 4.85 abc | 91.91 ± 14.40 a | 0.84 ± 0.09 b |
E900 | 42°00′03″ N, 127°33′57″ E | 900 | 2.50 | 693.50 | 90.18 ± 0.64 a | 4.66 ± 0.07 c | 38.81 ± 0.57 a | 17.02 ± 2.08 ab | 0.94 ± 0.05 c | 14.89 ± 0.68 a | 62.34 ± 13.16 b | 1.33 ± 0.27 b |
E1005 | 42°14′21″ N, 128°13′07″ E | 1005 | 2.21 | 706.00 | 89.19 ± 1.79 a | 5.88 ± 0.02 a | 41.01 ± 0.82 a | 14.97 ± 0.42 b | 0.79 ± 0.04 d | 5.98 ± 0.06 c | 38.77 ± 9.17 cd | 1.17 ± 0.02 b |
E1280 | 42°01′55″ N, 128°25′58″ E | 1280 | 0.96 | 793.00 | 83.86 ± 0.46 bc | 5.45 ± 0.05 b | 33.56 ± 1.40 b | 19.56 ± 0.16 ab | 0.73 ± 0.00 d | 11.96 ± 0.88 ab | 28.69 ± 8.83 d | 1.13 ± 0.36 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Wang, G.; Wang, M.; Zhao, M.; Yuan, Y.; Meng, J.; Zhao, Y.; Hu, N.; Zhang, T.; Liu, B. Variations in Soil Seed Banks in Sedge Peatlands across an Altitude Gradient. Diversity 2024, 16, 571. https://doi.org/10.3390/d16090571
Chen Q, Wang G, Wang M, Zhao M, Yuan Y, Meng J, Zhao Y, Hu N, Zhang T, Liu B. Variations in Soil Seed Banks in Sedge Peatlands across an Altitude Gradient. Diversity. 2024; 16(9):571. https://doi.org/10.3390/d16090571
Chicago/Turabian StyleChen, Qi, Guodong Wang, Ming Wang, Meiling Zhao, Yusong Yuan, Jingci Meng, Yantong Zhao, Nanlin Hu, Tao Zhang, and Bo Liu. 2024. "Variations in Soil Seed Banks in Sedge Peatlands across an Altitude Gradient" Diversity 16, no. 9: 571. https://doi.org/10.3390/d16090571
APA StyleChen, Q., Wang, G., Wang, M., Zhao, M., Yuan, Y., Meng, J., Zhao, Y., Hu, N., Zhang, T., & Liu, B. (2024). Variations in Soil Seed Banks in Sedge Peatlands across an Altitude Gradient. Diversity, 16(9), 571. https://doi.org/10.3390/d16090571