Halomonas kashgarensis sp. nov., a Novel Species Isolated from the Rhizosphere Soil of Phragmites australis (Cav.) Trin. ex Steud in Kashgar County, Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Culture Conditions
2.2. Phylogenetic Analysis
2.3. Morphological, Physiological, and Biochemical Characterizations
2.4. Chemotaxonomic Characteristics
2.5. Genome Sequencing and Analysis
2.6. Accession Numbers
3. Results
3.1. Phylogenomic Analysis Based on 16S rRNA Gene Sequence
3.2. Morphological, Physiological, and Biochemical Characteristics
3.3. Chemotaxonomic Characterization
3.4. Genomic Analyses
4. Taxonomic Conclusions
5. Description of Halomonas kashgarensis sp. nov.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
mLB | Modified Luria-Bertani |
ANI | Average nucleotide identity |
dDDH | Digital DNA-DNA hybridization |
PG | Phosphatidylglycerol |
DPG | Diphosphatidylglycerol |
PE | Phosphatidylethanolamine |
UPL 1–3 | Unidentified phospholipids |
UAPL 1–2 | Unidentified aminophospholipids |
UL | Unidentified lipids |
ddH2O | Double-distilled water |
CGMCC | China General Microbiological Culture Collection Center |
JCM | Japan Collection of Microorganisms |
SEM | Scanning electron microscope |
TEM | Transmission electronic microscope |
IAA | Indole acetic acid |
CAS | Chrome azurol S |
CMC | Carboxy methyl cellulose |
TLC | Thin layer chromatography |
HPLC | High-performance liquid chromatography |
NCBI | National Center for Biotechnology Information |
PacBio | Pacific biosciences sequel IIe |
KEGG | Kyoto encyclopedia of genes and genomes |
COG | Clusters of orthologous groups of proteins |
GO | Gene ontology |
CAZy | Carbohydrate-active enzymes database |
BGCs | Biosynthesis gene clusters |
GGDC | Genome-to-genome distance calculator |
CDSs | Coding sequences |
References
- Vreeland, R.H.; Litchfield, C.D.; Martin, E.L.; Elliot, E. Halomonas elongata, a New Genus and Species of Extremely Salt-Tolerant Bacteria. Int. J. Syst. Evol. Microbiol. 1980, 30, 485–495. [Google Scholar] [CrossRef]
- Tang, X.; Zhai, L.; Lin, Y.; Yao, S.; Wang, L.; Ge, Y.; Liu, Y.; Zhang, X.; Zhang, T.; Zhang, L.; et al. Halomonas alkalicola sp. nov., isolated from a household product plant. Int. J. Syst. Evol. Microbiol. 2017, 67, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Abdugheni, R.; Ma, J.; Wang, R.; Gao, L.; Liu, Y.; Li, W.; Cai, M.; Li, L. Halomonas flagellata sp. nov., a halophilic bacterium isolated from saline soil in Xinjiang. Arch. Microbiol. 2023, 205, 340. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wan, J.J.; Zhang, X.Y.; Xin, Y.; Sun, M.L.; Wang, P.; Zhang, W.P.; Tian, J.W.; Zhang, Y.Z.; Li, C.Y.; et al. Halomonas profundi sp. nov., isolated from deep-sea sediment of the Mariana Trench. Int. J. Syst. Evol. Microbiol. 2022, 72, 005210. [Google Scholar] [CrossRef]
- Ming, H.; Ji, W.L.; Li, M.; Zhao, Z.L.; Cheng, L.J.; Niu, M.M.; Zhang, L.Y.; Wang, Y.; Nie, G.X. Halomonas lactosivorans sp. nov., isolated from salt-lake sediment. Int. J. Syst. Evol. Microbiol. 2020, 70, 3504–3512. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Lai, Q.; Gu, L.; Shao, Z. Halomonas diversa sp. nov., isolated from deep-sea sediment of the Pacific Ocean. Int. J. Syst. Evol. Microbiol. 2021, 71, 004790. [Google Scholar] [CrossRef]
- Lu, H.; Xing, P.; Zhai, L.; Li, H.; Wu, Q. Halomonas montanilacus sp. nov., isolated from hypersaline Lake Pengyanco on the Tibetan Plateau. Int. J. Syst. Evol. Microbiol. 2020, 70, 2859–2866. [Google Scholar] [CrossRef]
- Gan, L.; Long, X.; Zhang, H.; Hou, Y.; Tian, J.; Zhang, Y.; Tian, Y. Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int. J. Syst. Evol. Microbiol. 2018, 68, 1153–1159. [Google Scholar] [CrossRef]
- Diéguez, A.L.; Balboa, S.; Romalde, J.L. Halomonas borealis sp. nov. and Halomonas niordiana sp. nov., two new species isolated from seawater. Syst. Appl. Microbiol. 2020, 43, 126040. [Google Scholar] [CrossRef]
- Ye, J.W.; Chen, G.Q. Halomonas as a chassis. Essays Biochem. 2021, 65, 393–403. [Google Scholar] [CrossRef]
- Wang, L.; Shao, Z. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Front. Microbiol. 2021, 12, 652766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, P.; Tian, H.; Jiang, H.; Wang, Y.; Yan, C. Identification of interior salt-tolerant bacteria from ice plant Mesembryanthemum crystallinum and evaluation of their promoting effects. Symbiosis 2018, 76, 243–252. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, P.; Tiwari, R.; Meena, K.K.; Yandigeri, M.; Singh, D.P.; Arora, D.K. Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol. Fertil. Soils 2011, 47, 907–916. [Google Scholar] [CrossRef]
- Bekkaye, M.; Baha, N.; Behairi, S.; MariaPerez-Clemente, R.; Kaci, Y. Impact of Bio-inoculation with Halotolerant Rhizobacteria on Growth, Physiological, and Hormonal Responses of Durum Wheat Under Salt Stress. J. Plant Growth Regul. 2023, 42, 6549–6564. [Google Scholar] [CrossRef]
- Etesami, H.; Glick, B.R. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environ. Exp. Bot. 2020, 178, 104124. [Google Scholar] [CrossRef]
- Purwaningsih, S.; Agustiyani, D.; Antonius, S. Diversity, activity, and effectiveness of Rhizobium bacteria as plant growth promoting rhizobacteria (PGPR) isolated from Dieng, central Java. Iran. J. Microbiol. 2021, 13, 130–136. [Google Scholar] [CrossRef]
- Khalifa, A.Y.Z.; Aldayel, M.F. Isolation and characterization of Klebsiella oxytoca from the rhizosphere of Lotus corniculatus and its biostimulating features. Braz. J. Biol. Rev. Brasleira Biol. 2022, 82, e266395. [Google Scholar] [CrossRef]
- Sagar, K.; Singh, S.P.; Goutam, K.K.; Konwar, B.K. Assessment of five soil DNA extraction methods and a rapid laboratory-developed method for quality soil DNA extraction for 16S rDNA-based amplification and library construction. J. Microbiol. Methods 2014, 97, 68–73. [Google Scholar] [CrossRef]
- Sheu, D.-S.; Wang, Y.-T.; Lee, C.-Y. Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 2000, 146, 2019–2025. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Fitch, W.M. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Syst. Biol. 1971, 20, 406–416. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evol. Int. J. Org. Evol. 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, B.; Lin, D.; Liu, G.; Su, Z.; Zhang, M.; Tang, K. Cerasicoccus fimbriatus sp. nov., isolated from the mid-ridge of the Southwest Indian Ocean. Antonie Leeuwenhoek 2024, 118, 37. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Vodovnik, M.; Zorec, M.; Liew, K.J.; Tokiman, L.; Chong, C.S. A description of Joostella sp. strain CR20 with potential biotechnological applications. Antonie Leeuwenhoek 2024, 118, 38. [Google Scholar] [CrossRef]
- Deng, J.; Hu, J.; Huang, Y.; Wang, S.; Ye, S. Mixed planting of subtropical Chinese fir in South China improves microbial carbon source metabolism and functional diversity through the accumulation of nutrients from soil aggregates. Front. Microbiol. 2024, 15, 1404428. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, N.; Liang, X.; Huang, T.; Li, B. Bacillus aryabhattai LAD impacts rhizosphere bacterial community structure and promotes maize plant growth. J. Sci. Food Agric. 2022, 102, 6650–6657. [Google Scholar] [CrossRef]
- El-Tarabily, K.A. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 2008, 308, 161–174. [Google Scholar] [CrossRef]
- Li, Y.; You, X.; Tang, Z.; Zhu, T.; Liu, B.; Chen, M.-X.; Xu, Y.; Liu, T.-Y. Isolation and identification of plant growth-promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. Physiol. Plant. 2022, 174, e13817. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Reang, L.; Bhatt, S.; Tomar, R.S.; Joshi, K.; Padhiyar, S.; Vyas, U.M.; Kheni, J.K. Plant growth promoting characteristics of halophilic and halotolerant bacteria isolated from coastal regions of Saurashtra Gujarat. Sci. Rep. 2022, 12, 4699. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Imran Mir, M.; Zulfajri, M.; Hanafiah, M.M.; Azeem Unnisa, S.; Mahboob, M. Plant growth promoting and antifungal asset of indigenous rhizobacteria secluded from saffron (Crocus sativus L.) rhizosphere. Microb. Pathog. 2021, 150, 104734. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.Y.; Lim, B.R.; Goto, N.; Fujie, K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J. Microbiol. Methods 2001, 47, 17–24. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Zhang, D.-F.; He, W.; Shao, Z.; Ahmed, I.; Zhang, Y.; Li, W.-J.; Zhao, Z. EasyCGTree: A pipeline for prokaryotic phylogenomic analysis based on core gene sets. BMC Bioinform. 2023, 24, 390. [Google Scholar] [CrossRef]
- Sun, J.; Lu, F.; Luo, Y.; Bie, L.; Xu, L.; Wang, Y. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 2023, 51, W397–W403. [Google Scholar] [CrossRef]
- Chalita, M.; Kim, Y.O.; Park, S.; Oh, H.S.; Cho, J.H.; Moon, J.; Baek, N.; Moon, C.; Lee, K.; Yang, J.; et al. EzBioCloud: A genome-driven database and platform for microbiome identification and discovery. Int. J. Syst. Evol. Microbiol. 2024, 74, 006421. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Oh, H.-S.; Park, S.-C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Cao, X.; Xu, G.; Wu, H.; Tang, X. Halomonas maris sp. nov., a moderately halophilic bacterium isolated from sediment in the southwest Indian Ocean. Arch. Microbiol. 2021, 203, 3279–3285. [Google Scholar] [CrossRef]
- Jiang, J.; Pan, Y.; Meng, L.; Hu, S.; Zhang, X.; Hu, B.; Meng, J.; Li, C.; Huang, H.; Wang, K.; et al. Halomonas zhaodongensis sp. nov., a slightly halophilic bacterium isolated from saline–alkaline soils in Zhaodong, China. Antonie Leeuwenhoek 2013, 104, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Kaye, J.Z.; Márquez, M.C.; Ventosa, A.; Baross, J.A. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: Halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int. J. Syst. Evol. Microbiol. 2004, 54, 499–511. [Google Scholar] [CrossRef]
- Jiang, J.; Pan, Y.; Hu, S.; Zhang, X.; Hu, B.; Huang, H.; Hong, S.; Meng, J.; Li, C.; Wang, K. Halomonas songnenensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils. Int. J. Syst. Evol. Microbiol. 2014, 64, 1662–1669. [Google Scholar] [CrossRef]
- Franzmann, P.D.; Tindall, B.J. A Chemotaxonomic Study of Members of the Family Halomonadaceae. Syst. Appl. Microbiol. 1990, 13, 142–147. [Google Scholar] [CrossRef]
- Dobson, S.J.; Franzmann, P.D. Unification of the Genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the Species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a Single Genus, Halomonas, and Placement of the Genus Zymobacter in the Family Halomonadaceae. Int. J. Syst. Evol. Microbiol. 1996, 46, 550–558. [Google Scholar] [CrossRef]
- Pitiwittayakul, N.; Yukphan, P.; Charoenyingcharoen, P.; Tanasupawat, S. Endosaccharibacter trunci gen. nov., sp. nov. and Rhizosaccharibacter radicis gen. nov., sp. nov., two novel bacteria of the family Acetobacteraceae isolated from sugarcane. Heliyon 2024, 10, e32825. [Google Scholar] [CrossRef]
- Ning, Z.; Lin, K.; Gao, M.; Han, X.; Guan, Q.; Ji, X.; Yu, S.; Lu, L. Mitigation of Salt Stress in Rice by the Halotolerant Plant Growth-Promoting Bacterium Enterobacter asburiae D2. J. Xenobiotics 2024, 14, 333–349. [Google Scholar] [CrossRef]
- Girma, B.; Panda, A.N.; Roy, P.C.; Ray, L.; Mohanty, S.; Chowdhary, G. Molecular, biochemical, and comparative genome analysis of a rhizobacterial strain Klebsiella Sp. KBG6.2 imparting salt stress tolerance to Oryza sativa L. Environ. Exp. Bot. 2022, 203, 105066. [Google Scholar] [CrossRef]
Characteristics | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Cell size (μm) | 0.3–0.5 × 2.5–3.0 | ND | ND | 1.0 × 2.0–3.0 c | 0.6–0.9 × 1.3–2.7 d | 1.5 × 2.0–3.0 c |
Temperature for growth (°C) | ||||||
Range | 10–43 | 4–50 a | 4–60 b | −1–35 c | 4–40 d | 2–40 c |
Optimum | 37 | 37 a | 35 b | 20–35 c | 35 d | 30 c |
NaCl concentration for growth (%, w/v) | ||||||
Range | 0–20 | 3–25 a | 0–15 b | 0.5–24 c | 0.2–15 d | 0.5–22 c |
Optimum | 12 | 7 a | 3 b | 2–3 c | 4 d | 4–7 c |
pH for growth | ||||||
Range | 6.0–11.0 | 5.0–11.0 a | 6.0–12.0 b | 5.0–10.0 c | 5.0–10.0 d | 5.0–12.0 c |
Optimum | 7.0–8.0 | 7.0 a | 9.0 b | ND | 7.0 d | ND |
Hydrolysis of: | ||||||
Tween 40 | + | ND | ND | ND | ND | ND |
Tween 80 | + | ND | − b | − c | − d | − c |
Acid production from: | ||||||
L-arabinose | + | + a | − b | − c | − d | − c |
D-galactose | − | ND | − b | + c | − d | − c |
D-xylose | + | − a | + b | + c | + d | − c |
D-glucose | + | − a | + b | + c | − d | + c |
D-sucrose | − | − a | + b | − c | − d | − c |
D-fructose | − | ND | + b | − c | − d | − c |
DNA G+C content (mol%) | 59.3 | 54.4 a | 53.8 b | 56.0 c | 57.4 d | 56.3 c |
Characteristics | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Fatty acid (>10% in content) | C18:1ω7c and/or C18:1ω6c (55.67%), C16:1ω7c and/or C16:1ω6c (20.16%) | C16:0 (25.5%), C17:0 cyclo (14.0%), C19:0 cyclo ω8c (18.7%), C18:1ω7c and/or C18:1ω6c (18.1%) a | C18:1ω7c (62.3%), C16:0 (17.6%) b | C18:1ω7c (47.2%), C16:1ω7c and/or C16:1ω6c (18.9%) and C16:0 (16.3%) c |
Major polar lipids | DPG, PG, PE, UPL 1–3, UAPL 1–2, UL | DPG, PG, PE, UPL, UAPL, UL a | ND | DPG, PE, PG, UPL, UL c |
Quinone | Q-9 | Q-9 a | Q-9 b | Q-9 c |
Starin | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
ANI (%) | 74.04 | 72.64 | 74.09 | 75.59 | 73.30 |
dDDH (%) | 19.80 | 19.70 | 20.40 | 20.20 | 20.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.-P.; Wang, Y.; Chen, X.-Y.; Wang, R.; Xu, Y.; Dai, J.-P.; Singh, D.; Zhang, X.-X. Halomonas kashgarensis sp. nov., a Novel Species Isolated from the Rhizosphere Soil of Phragmites australis (Cav.) Trin. ex Steud in Kashgar County, Xinjiang, China. Diversity 2025, 17, 98. https://doi.org/10.3390/d17020098
Liang Z-P, Wang Y, Chen X-Y, Wang R, Xu Y, Dai J-P, Singh D, Zhang X-X. Halomonas kashgarensis sp. nov., a Novel Species Isolated from the Rhizosphere Soil of Phragmites australis (Cav.) Trin. ex Steud in Kashgar County, Xinjiang, China. Diversity. 2025; 17(2):98. https://doi.org/10.3390/d17020098
Chicago/Turabian StyleLiang, Zhen-Pu, Yi Wang, Xiao-Yue Chen, Rui Wang, Yan Xu, Jin-Ping Dai, Deepali Singh, and Xiao-Xia Zhang. 2025. "Halomonas kashgarensis sp. nov., a Novel Species Isolated from the Rhizosphere Soil of Phragmites australis (Cav.) Trin. ex Steud in Kashgar County, Xinjiang, China" Diversity 17, no. 2: 98. https://doi.org/10.3390/d17020098
APA StyleLiang, Z.-P., Wang, Y., Chen, X.-Y., Wang, R., Xu, Y., Dai, J.-P., Singh, D., & Zhang, X.-X. (2025). Halomonas kashgarensis sp. nov., a Novel Species Isolated from the Rhizosphere Soil of Phragmites australis (Cav.) Trin. ex Steud in Kashgar County, Xinjiang, China. Diversity, 17(2), 98. https://doi.org/10.3390/d17020098