Development and Elucidation of a Novel Fluorescent Boron-Sensor for the Analysis of Boronic Acid-Containing Compounds
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
4.1. Genaral
4.2. Preparation of the Sensor-BPA Complexes
4.3. Silica Gel Plate Staining Using Boron Sensor 5
4.4. Effect of BPA Concentration on the Emitted Fluorescence Following Staining with 5
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, W.; Gao, X.; Wang, B. Boronic acid compounds as potential pharmaceutical agents. Med. Res. Rev. 2003, 23, 346–368. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.M.; Murthy, R.V.; Yadav, R.; Kikkeri, R. A rationally designed peptidomimetic biosensor for sialic acid on cell surfaces. Chem. Commun. 2015, 51, 8112–8115. [Google Scholar] [CrossRef] [PubMed]
- Dilek, O.; Lei, Z.; Mukherjee, K.; Bane, S. Rapid formation of a stable boron–nitrogen heterocycle in dilute, neutral aqueous solution for bioorthogonal coupling reactions. Chem. Commun. 2015, 51, 16992–16995. [Google Scholar] [CrossRef] [PubMed]
- Okuro, K.; Sasaki, M.; Aida, T. Boronic acid-appended molecular glues for ATP-responsive activity modulation of enzymes. J. Am. Chem. Soc. 2016, 138, 5527–5530. [Google Scholar] [CrossRef] [PubMed]
- Palombella, V.J.; Conner, E.M.; Fuseler, J.W.; Destree, A.; Davis, J.M.; Larous, F.S.; Wolf, R.E.; Huang, J.; Brand, S.; Elliott, P.J.; et al. Role of the proteasome and NF-kB in streptococcal cell wall-induced polyarthritis. Proc. Natl. Acad. Sci. USA 1998, 95, 15671–15676. [Google Scholar] [PubMed]
- Piest, M.; Ankoné, M.; Engbersen, J.F.J. Carbohydrate-interactive pDNA and siRNA gene vectors based on boronic acid functionalized poly(amido amine)s. J. Controlled Release 2013, 169, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Soloway, A.H.; Tjarks, W.; Barnum, B.A.; Rong, F.G.; Barth, R.F.; Codogni, I.M.; Wilson, J.G. The chemistry of neutron capture therapy. Chem. Rev. 1998, 98, 1515–1562. [Google Scholar] [CrossRef] [PubMed]
- Mishima, Y.; Honda, C.; Ichihashi, M.; Obara, H.; Ichihashi, M.; Obara, H.; Hiratsuka, J.; Fukuda, H.; Karashima, H.; Kobayashi, T.; et al. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet 1989, 2, 388–389. [Google Scholar] [PubMed]
- Hattori, Y.; Asano, T.; Kirihata, M.; Yamaguchi, Y.; Wakamiya, T. Development of the first and practical method for enantioselective synthesis of 10B-enriched p-borono-L-phenylalanine. Tetrahedron Lett. 2008, 49, 4977–4980. [Google Scholar] [CrossRef]
- Andoh, T.; Fujimoto, T.; Sudo, T.; Fujita, I.; Imabori, M.; Moritake, H.; Sugimoto, T.; Sakuma, Y.; Takeuchi, T.; Kawabata, S.; et al. Boron neutron capture therapy for clear cell sarcoma (CCS): Biodistribution study of p-borono-l-phenylalanine in CCS-bearing animal models. Appl. Radiat. Isot. 2011, 69, 1721–1724. [Google Scholar] [CrossRef] [PubMed]
- Adams, A. Development of the proteasome inhibitor PS-341. Oncologist 2002, 7, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Girbig, A.K.; Kalesse, M. Synthesis and pharmacology of proteasome inhibitors. Angew. Chem. Int. Ed. 2013, 52, 5450–5488. [Google Scholar]
- Jinna, S.; Finch, J. Spotlight on tavaborole for the treatment of onychomycosis. Drug Des. Devel. Ther. 2015, 9, 6185–6190. [Google Scholar] [PubMed]
- Baker, S.J.; Ding, C.Z.; Akama, T.; Zhang, Y.; Hernandez, V.; Xia, Y. Therapeutic potential of boron-containing compounds. Future Med. Chem. 2009, 1, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Smoum, R.; Rubinstein, A.; Dembisky, V.M.; Srebnik, M. Boron containing compounds as protease inhibitors. Chem. Rev. 2012, 112, 4156–4220. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Ishimura, M.; Ohta, Y.; Takenaka, H.; Watanabe, T.; Tanaka, H.; Ono, K.; Kirihata, M. Detection of boronic acid derivatives in cells using a fluorescent sensor. Org. Biomol. Chem. 2015, 13, 6927–6930. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Ishimura, M.; Ohta, Y.; Takenaka, H.; Kirihata, M. Visualization of boronic acid-containing pharmaceuticals in live tumor cells using a fluorescent boronic acid sensor. ACS Sens. 2016, 1, 1394–1397. [Google Scholar] [CrossRef]
- Nagata, Y.; Chujo, Y. Synthesis of methyl-substituted main-chain-type organoboron quinolate polymers and their emission color tuning. Macromolecules 2008, 41, 2809–2813. [Google Scholar] [CrossRef]
- Kubota, Y.; Hara, H.; Tanaka, S.; Funabiki, K.; Matsui, M. Synthesis and fluorescence properties of novel pyrazine boron complexes bearing a β-iminoketone ligand. Org. Lett. 2011, 13, 6544–6547. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.G.; Shin, G.H.; Lee, M.H.; Do, Y. Four-coordinate boron compounds derived from 2-(2-pyridyl)phenol ligand as novel hole-blocking materials for phosphorescent OLEDs. J. Organomet. Chem. 2009, 694, 1922–1928. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Bu, W.; Guo, J.; Wang, Y. A mixed pyridine–phenol boron complex as an organic electroluminescent material. Chem. Commun. 2000, 1551–1552. [Google Scholar] [CrossRef]
Ligand | Ligand Only | Ligand-BPA Complex | ||||||
---|---|---|---|---|---|---|---|---|
Ex Max (nm) | Em Max (nm) | Stokes Shift (cm−1) | φ | Ex Max (nm) | Em Max (nm) | Stokes Shift (cm−1) | φ | |
1 | 413 | 551 | 6064 | — | 408 | 430 | 1254 | 0.6% |
2 | 374 | 531 | — | — | 374 | 531 | — | — |
3 | 419 | 477 | 2902 | — | 421 | 516 | 4373 | 3.3% |
4 | 340 | 384 | 3370 | — | 352 | 433 | 5314 | 1.2% |
5 | 376 | 483 | 5892 | — | 355 | 464 | 6617 | 9.3% |
6 | 376 | — | — | — | 376 | — | — | — |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hattori, Y.; Ogaki, T.; Ishimura, M.; Ohta, Y.; Kirihata, M. Development and Elucidation of a Novel Fluorescent Boron-Sensor for the Analysis of Boronic Acid-Containing Compounds. Sensors 2017, 17, 2436. https://doi.org/10.3390/s17102436
Hattori Y, Ogaki T, Ishimura M, Ohta Y, Kirihata M. Development and Elucidation of a Novel Fluorescent Boron-Sensor for the Analysis of Boronic Acid-Containing Compounds. Sensors. 2017; 17(10):2436. https://doi.org/10.3390/s17102436
Chicago/Turabian StyleHattori, Yoshihide, Takuya Ogaki, Miki Ishimura, Yoichiro Ohta, and Mitsunori Kirihata. 2017. "Development and Elucidation of a Novel Fluorescent Boron-Sensor for the Analysis of Boronic Acid-Containing Compounds" Sensors 17, no. 10: 2436. https://doi.org/10.3390/s17102436
APA StyleHattori, Y., Ogaki, T., Ishimura, M., Ohta, Y., & Kirihata, M. (2017). Development and Elucidation of a Novel Fluorescent Boron-Sensor for the Analysis of Boronic Acid-Containing Compounds. Sensors, 17(10), 2436. https://doi.org/10.3390/s17102436