A Simple Assay for Ultrasensitive Colorimetric Detection of Ag+ at Picomolar Levels Using Platinum Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of Citric Acid-Modified PtNPs
2.3. Colorimetric Detection of Ag+
3. Results and Discussion
3.1. Sensing Principle of the Ag+ Colorimetric Sensor
3.2. Characterization of the Formed PtNPs
3.3. Catalytic Activity of PtNPs for TMB Oxidation
3.4. Inhibitory Effect of Ag+ on Catalytic Activity
3.5. Optimization of Experimental Conditions
3.6. Sensitivity of the Ag+ Sensing System
3.7. Selectivity and Recovery Performance
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Veitch, N.C. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 2004, 65, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, H.; Dai, S.; Zhi, X.; Zhang, J.; Li, W. Glutathione-stabilized palladium nanozyme for colorimetric assay of silver(I) ions. Analyst 2015, 140, 6676–6683. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, H.; Zhang, J.; Fu, Y. Synthesis and sensing application of glutathione-capped platinum nanoparticles. Anal. Methods 2015, 7, 4464–4471. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, J.; Huang, L.; Li, Y.; Tang, D. In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Microchim. Acta 2017, 184, 2445–2453. [Google Scholar] [CrossRef]
- Tong, Y.; Jiao, X.; Yang, H.; Wen, Y.; Su, L.; Zhang, X. Reverse-bumpy-ball-type-nanoreactor-loaded nylon membranes as peroxidase-mimic membrane reactors for a colorimetric assay for H2O2. Sensors 2016, 16, 465. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Liu, J.W.; Jiang, J.H.; Zhong, W. Cobalt oxyhydroxide nanoflakes with intrinsic peroxidase catalytic activity and their application to serum glucose detection. Anal. Bioanal. Chem. 2017, 409, 4225–4232. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Wang, L.; An, F.; Xu, H.; Yin, Z.; Tang, S.; Yang, H.H.; Song, H. Graphitic carbon nitride supported platinum nanocomposites for rapid and sensitive colorimetric detection of mercury ions. Anal. Chim. Acta 2017, 980, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zhong, L.; Chen, H.; Li, Z.; Song, Z.; Guo, L.; Fu, F. A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets. Microchim. Acta 2017, 184, 1233–1237. [Google Scholar] [CrossRef]
- Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. 2010, 6, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Sreekumari, K.R.; Nandakumar, K.; Takao, K.; Kikuchi, Y. Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion. ISIJ Int. 2003, 43, 1799–1806. [Google Scholar] [CrossRef]
- Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Houdt, R.V. Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 2013, 26, 609–621. [Google Scholar] [CrossRef] [PubMed]
- EPA CASRN. EPA Drinking Water Criteria Document for Silver. Environ. Prot. Agency 1989, 444, 7440–7444. [Google Scholar]
- Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999, 18, 89–108. [Google Scholar] [CrossRef]
- Krachler, M.; Mohl, C.; Emons, H.; Shotyk, W. Analytical procedures for the determination of selected trace elements in peat and plant samples by inductively coupled plasma mass spectrometry. Spectrochim. Acta B 2002, 57, 1277–1289. [Google Scholar] [CrossRef]
- Musil, S.; Kratzer, J.; Vobecky, M.; Benada, O.; Matousek, T.J. Silver chemical vapor generation for atomic absorption spectrometry: Minimization of transport losses, interferences and application to water analysis. J. Anal. At. Spectrom. 2010, 25, 1618–1626. [Google Scholar] [CrossRef]
- Zorn, M.E.; Wilson, C.G.; Gianchandani, Y.B.; Anderson, M.A. Detection of aqueous metals using a microglow discharge atomic emission sensor. Sens. Lett. 2004, 2, 179–185. [Google Scholar] [CrossRef]
- Mattoussai, H.; Manro, J.M.; Goldman, E.R.; Anderson, G.P.; Sunder, V.C.; Micula, F.V.; Bawendi, M.G. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 2000, 122, 12142–12150. [Google Scholar] [CrossRef]
- Saran, R.; Liu, J. A silver DNAzyme. Anal. Chem. 2016, 88, 4014–4020. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, B.; Zhang, H.; Sun, Y.; Wang, J.; Zhang, J.; Fu, Y. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens. Bioelectron. 2015, 66, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.; Zhu, Y.; Wu, L.L.; Xie, Z.J.; Xue, F.; Peng, C.F. Highly sensitive colorimetric detection of copper ions based on regulating the peroxidase-like activity of Au@ Pt nanohybrids. Anal. Methods 2016, 8, 7531–7536. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, Z.; Hao, J.; Yang, W.; Tang, J. BSA-stabilized Au clusters as peroxidase mimetic for colorimetric detection of Ag+. Sens. Actuators B Chem. 2016, 232, 692–697. [Google Scholar] [CrossRef]
- Song, H.; Wang, Y.; Wang, G.; Wei, H.; Luo, S. Ultrathin two-dimensional MnO2 nanosheet as a stable coreactant of 3,3’,5,5’-tetramethylbenzidine chromogenic substrate for visual and colorimetric detection of iron (II) ion. Microchim. Acta 2017, 184, 3399–3404. [Google Scholar] [CrossRef]
- Borodko, Y.; Ercius, P.; Pushkarev, V.; Thompson, C.; Somorjai, G. From single Pt atoms to Pt nanocrystals: Photoreduction of Pt2+ inside of a PAMAM dendrimer. J. Phys. Chem. Lett. 2012, 3, 236–241. [Google Scholar] [CrossRef]
- Li, Y.; Tang, L.; Li, J. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem. Commun. 2009, 11, 846–849. [Google Scholar] [CrossRef]
- Fatih, S.; Gökagaç, G. Different sized platinum nanoparticles supported on carbon: An XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 2007, 111, 5715–5720. [Google Scholar]
- Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. 2000, 134, 139–142. [Google Scholar] [CrossRef]
- Mu, J.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695–6697. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Q.; Zhao, H.; Zhang, L.; Su, Y.; Lv, Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 2012, 137, 4552–4558. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Liu, Y.; Yuan, J.; Yin, J.J.; Wu, X.; Hu, X.; Zhang, K.; Liu, J.; Chen, C.; Ji, Y.; et al. Au@ Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 2011, 32, 1139–1147. [Google Scholar]
- Zhang, Y.; Jiang, H.; Wang, X. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag+ and Hg2+. Anal. Chim. Acta 2015, 870, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Liu, T.Y.; Li, H.W.; Liu, Z.; Wu, Y. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 2012, 4, 2251–2254. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Shi, W.; Xu, Y.; Wu, D.; Sun, Y. Visible-light-responsive Ag–Si codoped anatase TiO2 photocatalyst with enhanced thermal stability. Mater. Chem. Phys. 2011, 125, 825–832. [Google Scholar] [CrossRef]
- Huang, H.; Chen, R.; Ma, J.; Yan, L.; Zhao, Y.; Wang, Y.; Zhang, W.; Fan, J.; Chen, X. Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu2+ and Ag+ in water and serum. Chem. Commun. 2014, 50, 15415–15418. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Métraux, G.S.; Millstone, J.E.; Mirkin, C.A. Mechanistic study of photomediated triangular silver nanoprism growth. J. Am. Chem. Soc. 2008, 130, 8337–8344. [Google Scholar] [CrossRef] [PubMed]
- Wojtysiak, S.; Kudelski, A. Influence of oxygen on the process of formation of silver nanoparticles during citrate/borohydride synthesis of silver sols. Colloid. Surf. A 2012, 410, 45–51. [Google Scholar] [CrossRef]
- Ojea-Jiménez, I.; López, X.; Arbiol, J.; Puntes, V. Citrate-coated gold nanoparticles as smart scavengers for mercury(II) removal from polluted waters. ACS Nano 2012, 6, 2253–2260. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, Z.; Zhou, X.; Hu, J. Colorimetric response of peptide modified gold nanoparticles: An original assay for ultrasensitive silver detection. Biosens. Bioelectron. 2017, 92, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.F.; Zhang, Y.Y.; Wang, L.Y.; Jin, Z.Y.; Shao, G. Colorimetric assay for the simultaneous detection of Hg2+ and Ag+ based on inhibiting the peroxidase-like activity of core-shell Au@ Pt nanoparticles. Anal. Methods 2017, 9, 4363–4370. [Google Scholar] [CrossRef]
- Xi, H.; Cui, M.; Li, W.; Chen, Z. Colorimetric detection of Ag+ based on C-Ag+-C binding as a bridge between gold nanoparticles. Sens. Actuators B Chem. 2017, 250, 641–646. [Google Scholar] [CrossRef]
- Safavi, A.; Ahmadi, R.; Mohammadpour, Z. Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles. Sens. Actuators B Chem. 2017, 242, 609–615. [Google Scholar] [CrossRef]
- Qi, L.; Yan, Z.; Huo, Y.; Hai, X.M.; Zhang, Z.Q. MnO2 nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of Ag+ ions. Biosens. Bioelectron. 2017, 87, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Wang, H.; Li, X.; Xu, B.; Tian, W. Turn-on sensing for Ag+ based on AIE-active fluorescent probe and cytosine-rich DNA. Anal. Bioanal. Chem. 2015, 407, 2625–2630. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, J.; Zhang, J.; Zhang, W.; Zhang, Y. Signal-on electrochemical sensor for the detection of two analytes based on the conformational changes of DNA probes. Anal. Methods 2016, 8, 8059–8064. [Google Scholar] [CrossRef]
- Miao, P.; Tang, Y.; Wang, L. DNA modified Fe3O4@ Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl. Mater. Interfaces 2017, 9, 3940–3947. [Google Scholar] [CrossRef] [PubMed]
- Lou, T.; Chen, Z.; Wang, Y.; Chen, L. Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Shi, F.; Doak, J.W.; Sun, H.; Zhao, L.; Wang, P.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ. Sci. 2015, 8, 267–277. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, M.; Yang, J.; Zheng, X.; Cai, W.; Meng, G.; Qian, H.; Wang, H.; Jin, R. Well-defined nanoclusters as fluorescent nanosensors: A case study on Au25(SG)18. Small 2012, 8, 2028–2035. [Google Scholar] [CrossRef] [PubMed]
Ag+ (nM) | TMB (Km/mM) | TMB (Vmax/M S−1) | H2O2 (Km/mM) | H2O2 (Vmax/M S−1) |
---|---|---|---|---|
0 | 0.0995 | 1.201 × 10−8 | 230.8 | 1.656 × 10−7 |
0.5 | 0.1077 | 1.045 × 10−8 | 255.9 | 1.372 × 10−7 |
2.0 | 0.1652 | 0.872 × 10−8 | 283.6 | 1.215 × 10−7 |
Methods | Probes | Linear Range | LOD | References |
---|---|---|---|---|
Colorimetric | Peptide-AuNPs | 10~1000 nM | 7.4 nM | [40] |
Colorimetric | Au@PtNPs | 5~100 nM | 2.0 nM | [41] |
Colorimetric | DNA-AuNPs | 1~1000 nM | 0.24 nM | [42] |
Colorimetric | AuNPs | 1~9 μM | 0.41 μM | [43] |
Colorimetric | BSA-Au clusters | 0.5~10 μM | 204 nM | [23] |
Fluorescence | Proflavine-DNA/MnO2 | 30~240 nM | 9.1 nM | [44] |
Fluorescence | DSAI/C-rich DNA | 0~4.0 μM | 155 nM | [45] |
Electrochemistry | DNA/AuNPs | 0.1~40 nM | 0.05 nM | [46] |
Electrochemistry | DNA/Fe3O4-AuNPs | 10~150 nM | 3.4 nM | [47] |
Colorimetric | Citrate-modified PtNPs | 0.01~3.0 nM | 7.8 pM | This work |
Sample | Add (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
River water | 0.20 | 0.21 | 105.0 | 6.7 |
1.00 | 1.03 | 103.0 | 5.4 | |
2.00 | 1.96 | 98.0 | 5.1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-W.; Wang, M.; Wang, L.; Xu, H.; Tang, S.; Yang, H.-H.; Zhang, L.; Song, H. A Simple Assay for Ultrasensitive Colorimetric Detection of Ag+ at Picomolar Levels Using Platinum Nanoparticles. Sensors 2017, 17, 2521. https://doi.org/10.3390/s17112521
Wang Y-W, Wang M, Wang L, Xu H, Tang S, Yang H-H, Zhang L, Song H. A Simple Assay for Ultrasensitive Colorimetric Detection of Ag+ at Picomolar Levels Using Platinum Nanoparticles. Sensors. 2017; 17(11):2521. https://doi.org/10.3390/s17112521
Chicago/Turabian StyleWang, Yi-Wei, Meili Wang, Lixing Wang, Hui Xu, Shurong Tang, Huang-Hao Yang, Lan Zhang, and Hongbo Song. 2017. "A Simple Assay for Ultrasensitive Colorimetric Detection of Ag+ at Picomolar Levels Using Platinum Nanoparticles" Sensors 17, no. 11: 2521. https://doi.org/10.3390/s17112521
APA StyleWang, Y. -W., Wang, M., Wang, L., Xu, H., Tang, S., Yang, H. -H., Zhang, L., & Song, H. (2017). A Simple Assay for Ultrasensitive Colorimetric Detection of Ag+ at Picomolar Levels Using Platinum Nanoparticles. Sensors, 17(11), 2521. https://doi.org/10.3390/s17112521