Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Setup
2.2. Microbial Cultures
2.3. Experimental Procedure
2.4. Biofilm Formation
2.5. Acoustical Parameters
3. Results and Discussion
3.1. Evolution of the Electrical Resonance Parameters
3.2. Evolution of the Biofilm Mechanical Parameters
3.3. Characterization of the E. coli Biofilm
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, K.K. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 2004, 236, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbial. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.W.; He, Y.; Ren, Y.; Zerdoum, A.; Libera, M.R.; Sharma, P.K.; van Winkelhoff, A.J.; Neut, D.; Stoodley, P.; van der Mei, H.C.; et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol. Rev. 2015, 39, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Nivens, D.E.; Palmer, R.J., Jr.; White, D.C. Continuous nondestructive monitoring of microbial biofilms: A review of analytical techniques. J. Ind. Microbiol. 1995, 15, 263–276. [Google Scholar] [CrossRef]
- Janknecht, P.; Melo, L.F. Online biofilm monitoring. Rev. Environ. Sci. Biotechnol. 2003, 2, 269–283. [Google Scholar] [CrossRef]
- Strauss, J.; Liu, Y.; Camesano, T.A. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study. JOM J. Miner. Metals Mater. Soc. 2009, 61, 71–74. [Google Scholar] [CrossRef]
- Rogers, S.S.; Van Der Walle, C.; Waigh, T.A. Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 2008, 24, 13549–13555. [Google Scholar] [CrossRef] [PubMed]
- Pavlovsky, L.; Younger, J.G.; Solomon, M.J. In situ rheology of Staphylococcus epidermidis bacterial biofilms. Soft Matter 2013, 9, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Rühs, P.A.; Böni, L.; Fuller, G.G.; Inglis, R.F.; Fischer, P. In-situ quantification of the interfacial rheological response of bacterial biofilms to environmental stimuli. PLoS ONE 2013, 8, e78524. [Google Scholar] [CrossRef] [PubMed]
- Castro Blázquez, P. Resonadores Piezoeléctricos de Cizalladura: Estudio de la Formación de Biofilms y Caracterización de Fluidos magneto-reológicos. Ph.D. Thesis, Departamento de Acústica y Evaluación no Destructiva, Instituto de Tecnologías Físicas y de la Información (ITEFI), Madrid, Spain, 2016. (In Spanish). [Google Scholar]
- Sauerbrey, G.Z. Use of quartz vibration for weighing thin films on a microbalance. J. Phys. 1959, 155, 206–212. [Google Scholar]
- Lu, C.; Czanderna, A.W. Applications of Piezoelectric Quartz Crystal Microbalances; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Nomura, T.; Okuhara, A.M. Frequency shifts of piezoelectric quartz crystals immersed in organic liquids. Anal. Chim. Acta 1982, 142, 281–284. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–105. [Google Scholar]
- Ballato, A. Fluid viscosity nanosensor. In Proceedings of the 2010 IEEE Sensors Applications Symposium (SAS), Limerick, Ireland, 23–25 February 2010; pp. 46–49. [Google Scholar]
- Notley, S.M.; Eriksson, M.; Wågberg, L. Visco-elastic and adhesive properties of adsorbed polyelectrolyte multilayers determined in situ with QCM-D and AFM measurements. J. Colloid Interface Sci. 2005, 292, 29–37. [Google Scholar] [PubMed]
- Martin, S.J.; Granstaff, V.E.; Frye, G.C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 1991, 63, 2272–2281. [Google Scholar] [CrossRef]
- Rodahl, M.; Kasemo, B. On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sens. Actuators A 1996, 54, 448–456. [Google Scholar] [CrossRef]
- Lane, T.J.; Cheng, C.Y.; Dixon, M.C.; Oom, A.; Johal, M.S. Quartz Resonator-Based Approach to Ultrasonic Rheology of a Mixed-Phase Micellar System. Anal. Chem. 2008, 80, 7840–7845. [Google Scholar] [PubMed]
- Krim, J.; Solina, D.H.; Chiarello, R. Nanotribology of a Kr monolayer: A quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 1991, 66, 181. [Google Scholar] [PubMed]
- Tsionsky, V.; Gileadi, E. Use of the quartz crystal microbalance for the study of adsorption from the gas phase. Langmuir 1994, 10, 2830–2835. [Google Scholar] [CrossRef]
- Lin, Z.; Yip, C.M.; Joseph, I.S.; Ward, M.D. Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Anal. Chem. 1993, 65, 1546–1551. [Google Scholar]
- Sastry, M.; Patil, V.; Sainkar, S.R. Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J. Phys. Chem. B 1998, 102, 1404–1410. [Google Scholar]
- Pavey, K.D.; Ali, Z.; Olliff, C.J.; Paul, F. Application of the quartz crystal microbalance to the monitoring of Staphylococcus epidermidis antigen–antibody agglutination. J. Pharm. Biomed. Anal. 1999, 20, 241–245. [Google Scholar] [CrossRef]
- Xia, H.; Wang, F.; Huang, Q.; Huang, J.; Chen, M.; Wang, J.; Yao, C.; Chen, Q.; Cai, G.; Fu, W. Detection of Staphylococcus epidermidis by a quartz crystal microbalance nucleic acid biosensor array using Au nanoparticle signal amplification. Sensors 2008, 8, 6453–6470. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.L.; Van der Mei, H.C.; Busscher, H.J.; Sharma, P.K. Acoustic sensing of the bacterium–substratum interface using QCM-D and the influence of extracellular polymeric substances. J. Colloid Interface Sci. 2011, 357, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Sweity, A.; Ying, W.; Ali-Shtayeh, M.S.; Yang, F.; Bick, A.; Oron, G.; Herzberg, M. Relation between EPS adherence, viscoelastic properties, and MBR operation: Biofouling study with QCM-D. Water Res. 2011, 45, 6430–6440. [Google Scholar] [CrossRef] [PubMed]
- Ahimou, F.; Semmens, M.J.; Novak, P.J.; Haugstad, G. Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl. Environ. Microbiol. 2007, 73, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
- De Kerchove, A.J.; Elimelech, M. Structural growth and viscoelastic properties of adsorbed alginate layers in monovalent and divalent salts. Macromolecules 2006, 39, 6558–6564. [Google Scholar] [CrossRef]
- Marinkova, D.; Michel, M.; Raykova, R.; Danalev, D.; Yaneva, S.; Yotova, L.; Griesmar, P. Investigation on the proliferation of Gram negative bacterial cells onto sol-gel carriers. Bulgarian Chem. Commun. 2015, 47, 436–444. [Google Scholar]
- Caplain, E.; Ringeard, J.M.; Serfaty, S.; Martinez, L.; Wilkie-Chancellier, N.; Griesmar, P. Microrheological monitoring of life cycle of yeast cell Saccharomyces Cerevisiae. In Proceedings of the 2011 IEEE International Ultrasonics Symposium (IUS), Orlando, FL, USA, 18–21 October 2011; pp. 1514–1517. [Google Scholar]
- Li, F.; Wang, J.H.C.; Wang, Q.M. Thickness shear mode acoustic wave sensors for characterizing the viscoelastic properties of cell monolayer. Sens. Actuators B 2008, 128, 399–406. [Google Scholar] [CrossRef]
- Modin, C.; Stranne, A.L.; Foss, M.; Duch, M.; Justesen, J.; Chevallier, J.; Andersen, L.K.; Hemmersam, A.G.; Pedersen, F.S.; Besenbacher, F. QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials 2006, 27, 1346–1354. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.L.; Van der Mei, H.C.; Busscher, H.J.; Sharma, P.K. Influence of cell surface appendages on the bacterium—Substratum interface measured real-time using QCM-D. Langmuir 2008, 25, 1627–1632. [Google Scholar] [CrossRef] [PubMed]
- Resa, P.; Sierra, C.; Elvira, L. X-cut quartz crystal impedance meter for liquid characterization. Meas. Sci. Technol. 2011, 22, 025403. [Google Scholar]
- Resa, P.; Castro, P.; Rodríguez-López, J.; Elvira, L. Broadband spike excitation method for in-liquid QCM sensors. Sens. Actuators B 2012, 166, 275–280. [Google Scholar]
- Fey, P.D.; Olson, M.E. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 2010, 5, 917–933. [Google Scholar] [PubMed]
- Jackson, D.W.; Suzuki, K.; Oakford, L.; Simecka, J.W.; Hart, M.E.; Romeo, T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol. 2002, 184, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Johannsmann, D. The Quartz Crystal Microbalance in Soft Matter Research; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Fabry, B.; Maksym, G.N.; Butler, J.P.; Glogauer, M.; Navajas, D.; Fredberg, J.J. Scaling the microrheology of living cells. Phys. Rev. Lett. 2001, 87, 148102. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.D.; Crocker, J.C. Cell mechanics: Dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 2009, 11, 259–288. [Google Scholar] [PubMed]
- Chen, K.; Le, D.; Zhang, H.; Nie, L.; Yao, S. Model of quartz crystal microbe growth sensor and its application to estimation of microbial populations in mineral waters. Anal. Chim. Acta 1996, 329, 83–89. [Google Scholar]
- Olofsson, A.C.; Hermansson, M.; Elwing, H. Use of a quartz crystal microbalance to investigate the antiadhesive potential of N-acetyl-L-cysteine. Appl. Environ. Microbiol. 2005, 71, 2705–2712. [Google Scholar] [CrossRef] [PubMed]
- Reipa, V.; Almeida, J.; Cole, K.D. Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements. J. Microbiol. Methods 2006, 66, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Cramton, S.E.; Ulrich, M.; Götz, F.; Döring, G. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 2001, 69, 4079–4085. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.J.; Bandey, H.L.; Cernosek, R.W.; Hillman, A.R.; Brown, M.J. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance. Anal. Chem. 2000, 72, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Vives, A.A. Piezoelectric Transducers and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Lembre, P.; Lorentz, C.; Di Martino, P.; Di Martino, P. Exopolysaccharides of the Biofilm Matrix: A Complex Biophysical World; InTech Open Access Publisher: Rijeka, Croatia, 2012. [Google Scholar]
- Gutiérrez, D.; Hidalgo-Cantabrana, C.; Rodríguez, A.; García, P.; Ruas-Madiedo, P. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. PLoS ONE 2016, 11, e0163966. [Google Scholar] [CrossRef] [PubMed]
- Elvira, L.; Vera, P.; Cañadas, F.J.; Shukla, S.K.; Montero, F. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. Ultrasonics 2016, 64, 151–161. [Google Scholar] [CrossRef] [PubMed]
Culture Medium | Air | |
---|---|---|
Density, ρ (kg/m3) | 1030 | 1.2 |
Viscosity, η (Pa.s) | 0.88 × 10−3 | 1.8 × 10−5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, P.; Elvira, L.; Maestre, J.R.; Montero de Espinosa, F. Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms. Sensors 2017, 17, 1395. https://doi.org/10.3390/s17061395
Castro P, Elvira L, Maestre JR, Montero de Espinosa F. Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms. Sensors. 2017; 17(6):1395. https://doi.org/10.3390/s17061395
Chicago/Turabian StyleCastro, Pedro, Luis Elvira, Juan Ramón Maestre, and Francisco Montero de Espinosa. 2017. "Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms" Sensors 17, no. 6: 1395. https://doi.org/10.3390/s17061395
APA StyleCastro, P., Elvira, L., Maestre, J. R., & Montero de Espinosa, F. (2017). Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms. Sensors, 17(6), 1395. https://doi.org/10.3390/s17061395