Detection Methodologies for Pathogen and Toxins: A Review
Abstract
:1. Introduction
2. Different Conventional Methods
2.1. Pathogen Detection Methods
2.2. Detection Methods of Endotoxin
3. Biosensor-Based Method
3.1. Different Types of Bioreceptor
3.2. Types of Biosensing Methods
3.2.1. Biosensors Based on the Optical Method
3.2.2. Biosensors Based on the Electrochemical Method
Biosensors Based on the Amperometric Principle
Biosensors Based on Impedimetric Measurement
Biosensors Based on the Potentiometric Principle
3.2.3. Biosensors Based on Mass-Sensitivity
QCM-Based Biosensors
SAW-Based Biosensor
4. Nanomaterial-Based Sensors
5. Conclusions
Conflicts of Interest
References
- Dwivedi, H.P.; Jaykus, L.-A. Detection of pathogens in foods: The current state-of-the-art and future directions. Crit. Rev. Microbiol. 2011, 37, 40–63. [Google Scholar] [CrossRef] [PubMed]
- Sayad, A.A.; Ibrahim, F.; Uddin, S.M.; Pei, K.X.; Mohktar, M.S.; Madou, M.; Thong, K.L. A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection. Sens. Actuators B Chem. 2016, 227, 600–609. [Google Scholar] [CrossRef]
- Oliver, S.P.; Jayarao, B.M.; Almeida, R.A. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodbourne Pathog. Dis. 2005, 2, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Services, U.S.D.O.H.H. Cdc: Estimates of Foodborne Illness in the United States. Available online: https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html (accessed on 14 August 2017).
- On, S.; Lim, E.; Lopez, L.; Cressey, P.; Pirie, R. Annual Report Concerning Foodborne Disease in New Zealand; Enviromental Science and Research Limited (ESR): Christchurch, New Zealand, 2011; p. 130. [Google Scholar]
- Organization, W.H. Foodborne Diseases. Available online: http://www.who.int/foodsafety/areas_work/foodborne-diseases/en/ (accessed on 14 August 2017).
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T. World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the united states-major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.J.; Thomas, M.K.; Pintar, K.D. Expert elicitation as a means to attribute 28 enteric pathogens to foodborne, waterborne, animal contact, and person-to-person transmission routes in canada. Foodborne Pathog. Dis. 2015, 12, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.; Glass, K.; Ford, L.; Brown, K.; Hall, G. Foodborne Illness in Australia: Annual Incidence Circa 2000; Australian Government Department of Health and Aging: Canberra, Australia, 2005; p. 57.
- Vally, H.; Glass, K.; Ford, L.; Hall, G.; Kirk, M.D.; Shadbolt, C.; Veitch, M.; Fullerton, K.E.; Musto, J.; Becker, N. Proportion of illness acquired by foodborne transmission for nine enteric pathogens in australia: An expert elicitation. Foodborne Pathog. Dis. 2014, 11, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Adak, G.K.; Long, S.M.; O’Brien, S.J. Trends in indigenous foodborne disease and deaths, england and wales: 1992 to 2000. Gut 2002, 51, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.H.; Galindo, A.V.; Kurowicka, D.; Cooke, R.M. Attribution of foodborne pathogens using structured expert elicitation. Foodborne Pathog. Dis. 2008, 5, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Alocilja, E.; Radke, S. Market analysis of biosensor for food safety. Biosens. Bioelectron. 2003, 18, 841–846. [Google Scholar] [CrossRef]
- Wagner, A.B. Bacterial Food Poisoning. Available online: http://aggie-horticulture.tamu.edu/food-technology/bacterial-food-poisoning/ (accessed on 14 August 2017).
- Seydel, U.; Schromm, A.B.; Blunck, R.; Brandenburg, K. Chemical structure, molecular conformation, and bioactivity of endotoxins. Chem. Immunol. 2000, 74, 5–24. [Google Scholar] [PubMed]
- Lazcka, O.; Del Campo, F.J.; Munoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Wolff, B.J.; Bramley, A.M.; Thurman, K.A.; Whitney, C.G.; Whitaker, B.; Self, W.H.; Arnold, S.R.; Trabue, C.; Wunderink, R.G.; McCullers, J. Improved detection of respiratory pathogens by use of high-quality sputum with taqman array card technology. J. Clin. Microbiol. 2017, 55, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, P.; Zhao, X.; Du, W.; Feng, X.; Liu, B.-F. A self-contained microfluidic in-gel loop-mediated isothermal amplification for multiplexed pathogen detection. Sens. Actuators B Chem. 2017, 239, 1–8. [Google Scholar] [CrossRef]
- Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254. [Google Scholar] [CrossRef] [PubMed]
- Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 2003, 32, 3–13. [Google Scholar] [CrossRef]
- Lee, K.-M.; Runyon, M.; Herrman, T.J.; Phillips, R.; Hsieh, J. Review of salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control 2015, 47, 264–276. [Google Scholar] [CrossRef]
- Leoni, E.; Legnani, P.P. Comparison of selective procedures for isolation and enumeration of legionella species from hot water systems. J. Appl. Microbiol. 2001, 90, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ratnam, S.; March, S.B.; Ahmed, R.; Bezanson, G.S.; Kasatiya, S. Characterization of Escherichia coli serotype 0157:H7. J. Clin. Microbiol. 1988, 26, 2006–2012. [Google Scholar] [PubMed]
- Fratamico, P.M. Comparison of culture, polymerase chain reaction (PCR), taqman salmonella, and transia card salmonella assays for detection of salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef. Mol. Cell. Probes 2003, 17, 215–221. [Google Scholar] [CrossRef]
- Oh, S.J.; Park, B.H.; Jung, J.H.; Choi, G.; Lee, D.C.; Seo, T.S. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens. Bioelectron. 2016, 75, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.A.; Webster, J.A.; Straus, N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 1993, 59, 945–952. [Google Scholar] [PubMed]
- Belgrader, P.; Benett, W.; Hadley, D.; Richards, J.; Stratton, P.; Mariella, R.; Milanovich, F. Infectious disease—PCR detection of bacteria in seven minutes. Science 1999, 284, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Naravaneni, R.; Jamil, K. Rapid detection of food-borne pathogens by using molecular techniques. J. Med. Microbiol. 2005, 54, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; Frasca, S.; Sunila, I.; French, R.A. Application of a multiplex PCR for the detection of protozoan pathogens of the eastern oyster crassostrea virginica in field samples. Dis. Aquat. Org. 2004, 59, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Joung, M.; Yoon, S.; Choi, K.; Park, W.Y.; Yu, J.R. Multiplex PCR detection of waterborne intestinal protozoa: Microsporidia, cyclospora, and cryptosporidium. Korean J. Parasitol. 2010, 48, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Traore, O.; Arnal, C.; Mignotte, B.; Maul, A.; Laveran, H.; Billaudel, S.; Schwartzbrod, L. Reverse transcriptase PCR detection of astrovirus, hepatitis a virus, and poliovirus in experimentally contaminated mussels: Comparison of several extraction and concentration methods. Appl. Environ. Microbiol. 1998, 64, 3118–3122. [Google Scholar] [PubMed]
- Morales-Rayas, R.; Wolffs, P.F.G.; Griffiths, M.W. Simultaneous separation and detection of hepatitis a virus and norovirus in produce. Int. J. Food Microbiol. 2010, 139, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Yaron, S.; Matthews, K.R. A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157: H7: Investigation of specific target genes. J. Appl. Microbiol. 2002, 92, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Lee, S.B. Development of reverse transcriptase-polymerase chain reaction of fima gene to detect viable salmonella in milk. J. Anim. Sci. Technol. 2004, 46, 841–848. [Google Scholar]
- Lambertz, S.T.; Nilsson, C.; Hallanvuo, S.; Lindblad, M. Real-time PCR method for detection of pathogenic yersinia enterocolitica in food. Appl. Environ. Microbiol. 2008, 74, 6060–6067. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Mukhopadhyay, U.K. Novel multiplex PCR approaches for the simultaneous detection of human pathogens: Escherichia coli O157: H7 and listeria monocytogenes. J. Microbiol. Methods 2007, 68, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.S.; Mayo, M.W.; Bruno, J.G.; Bronk, B.V.; Batt, C.A.; Chambers, J.P. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 2000, 15, 549–578. [Google Scholar] [CrossRef]
- Gracias, K.S.; McKillip, J.L. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 2004, 50, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Durst, R.A. Simultaneous detection of Escherichia coli O157: H7, salmonella spp. And listeria monocytogenes with an array-based immunosorbent assay using universal protein g-liposomal nanovesicles. Talanta 2006, 69, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Magliulo, M.; Simoni, P.; Guardigli, M.; Michelini, E.; Luciani, M.; Lelli, R.; Roda, A. A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157: H7, yersinia enterocolitica, salmonella typhimurium, and listeria monocytogenes pathogen bacteria. J. Agric. Food Chem. 2007, 55, 4933–4939. [Google Scholar] [CrossRef] [PubMed]
- Qadri, A.; Ghosh, S.; Prakash, K.; Kumar, R.; Moudgil, K.D.; Talwar, G.P. Sandwich enzyme immunoassays for detection of salmonella-typhi. J. Immunoass. 1990, 11, 251–270. [Google Scholar] [CrossRef] [PubMed]
- Chapman, P.A.; Malo, A.T.C.; Siddons, C.A.; Harkin, M. Use of commercial enzyme immunoassays and immunomagnetic separation systems for detecting Escherichia coli O157 in bovine fecal samples. Appl. Environ. Microbiol. 1997, 63, 2549–2553. [Google Scholar] [PubMed]
- Rozand, C.; Feng, P.C.H. Specificity analysis of a novel phage-derived ligand in an enzyme-linked fluorescent assay for the detection of Escherichia coli O157: H7. J. Food Protect. 2009, 72, 1078–1081. [Google Scholar] [CrossRef]
- De Giusti, M.; Tufi, D.; Aurigemma, C.; Del Cimmuto, A.; Trinti, F.; Mannocci, A.; Boccia, A. Detection of Escherichia coli O157 in raw and cooked meat: Comparison of conventional direct culture method and enzyme linked fluorescent assay (ELFA). Ital. J. Public Health 2011, 8, 28. [Google Scholar]
- Vazquez, F.; Gonzalez, E.A.; Garabal, J.I.; Valderrama, S.; Blanco, J.; Baloda, S.B. Development and evaluation of an ELISA to detect Escherichia coli K88 (F4) fimbrial antibody levels. J. Med. Microbiol. 1996, 44, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Liu, C.; Wu, S.; Li, H.; Guo, H.; Yang, B.; Qiu, S.; Li, J.; Liu, L.; Zeng, H. Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of shigella boydii and Escherichia coli O157: H7 in bread, milk and jelly samples. Food Control 2016, 59, 345–351. [Google Scholar] [CrossRef]
- Abdel-Hamid, I.; Ivnitski, D.; Atanasov, P.; Wilkins, E. Highly sensitive flow-injection immunoassay system for rapid detection of bacteria. Anal. Chim. Acta 1999, 399, 99–108. [Google Scholar] [CrossRef]
- Valdivieso-Garcia, A.; Desruisseau, A.; Riche, E.; Fukuda, S.; Tatsumi, H. Evaluation of a 24-h bioluminescent enzyme immunoassay for the rapid detection of salmonella in chicken carcass rinses. J. Food Protect. 2003, 66, 1996–2004. [Google Scholar] [CrossRef]
- Rasooly, A.; Rasooly, R.S. Detection and analysis of staphylococcal enterotoxin a in food by western immunoblotting. Int. J. Food Microbiol. 1998, 41, 205–212. [Google Scholar] [CrossRef]
- Meng, J.H.; Doyle, M.P. Introduction. Microbiological food safety. Microbes Infect. 2002, 4, 395–397. [Google Scholar] [CrossRef]
- Ding, J.L.; Ho, B. Endotoxin Detection—From Limulus Amebocyte Lysate to Recombinant Factor C; Springer: Berlin, Germany, 2010; Volume 53. [Google Scholar]
- Thorne, P.S.; Perry, S.S.; Saito, R.; O’Shaughnessy, P.T.; Mehaffy, J.; Metwali, N.; Keefe, T.; Donham, K.J.; Reynolds, S.J. Evaluation of the limulus amebocyte lysate and recombinant factor c assays for assessment of airborne endotoxin. Appl. Environ. Microbiol. 2010, 76, 4988–4995. [Google Scholar] [CrossRef] [PubMed]
- Bang, F.B.; Frost, J.L. The toxic effect of a marine bacterium on limulus and the formation of blood clots. Mar. Biol. Lab. 1953, 105, 361–362. [Google Scholar]
- Alhogail, S.; Suaifan, G.A.; Zourob, M. Rapid colorimetric sensing platform for the detection of listeria monocytogenes foodborne pathogen. Biosens. Bioelectron. 2016, 86, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Kotanen, C.N.; Moussy, F.G.; Carrara, S.; Guiseppi-Elie, A. Implantable enzyme amperometric biosensors. Biosens. Bioelectron. 2012, 35, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Chemburu, S.; Wilkins, E.; Abdel-Hamid, I. Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosens. Bioelectron. 2005, 21, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Holford, T.R.J.; Davis, F.; Higson, S.P.J. Recent trends in antibody based sensors. Biosens. Bioelectron. 2012, 34, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Silbert, L.; Ben Shlush, I.; Israel, E.; Porgador, A.; Kolusheva, S.; Jelinek, R. Rapid chromatic detection of bacteria by use of a new biomimetic polymer sensor. Appl. Environ. Microbiol. 2006, 72, 7339–7344. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Bhunia, A.K. Cell-based biosensor for rapid screening of pathogens and toxins. Biosens. Bioelectron. 2010, 26, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Wu, V.C.H.; Chuang, Y.C.; Lin, C.S. Using oligonucleotide-functionalized au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J. Microbiol. Methods 2008, 73, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Alocilja, E.C. Characterization of nanoporous silicon-based DNA biosensor for the detection of salmonella enteritidis. IEEE Sens. J. 2008, 8, 775–780. [Google Scholar] [CrossRef]
- Zink, R.; Loessner, M.J. Classification of virulent and temperate bacteriophages of listeria spp. On the basis of morphology and protein analysis. Appl. Environ. Microbiol. 1992, 58, 296–302. [Google Scholar] [PubMed]
- Balasubramanian, S.; Sorokulova, I.B.; Vodyanoy, V.J.; Simonian, A.L. Lytic phage as a specific and selective probe for detection of staphylococcus aureus—A surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 2007, 22, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Goodridge, L.; Chen, J.; Griffiths, M. The use of a fluorescent bacteriophage assay for detection of Escherichia coli O157: H7 in inoculated ground beef and raw milk. Int. J. Food Microbiol. 1999, 47, 43–50. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Chen, H.; Horikawa, S.; Shen, W.; Simonian, A.; Chin, B.A. Direct detection of salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Biosens. Bioelectron. 2010, 26, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; McKinstry, M.; Hwang, J.; Oppenheim, A.B.; Fekete, R.A.; Giulian, G.; Merril, C.; Nagashima, K.; Adhya, S. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl. Acad. Sci. USA 2006, 103, 4841–4845. [Google Scholar] [CrossRef] [PubMed]
- Vo-Dinh, T. Biosensors and biochips. In Biomems and Biomedical Nanotechnology; Springer: Berlin, Germany, 2006; pp. 1–20. [Google Scholar]
- Singh, A.; Poshtiban, S.; Evoy, S. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 2013, 13, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Arutyunov, D.; Szymanski, C.M.; Evoy, S. Bacteriophage based probes for pathogen detection. Analyst 2012, 137, 3405–3421. [Google Scholar] [CrossRef] [PubMed]
- Narsaiah, K.; Jha, S.N.; Bhardwaj, R.; Sharma, R.; Kumar, R. Optical biosensors for food quality and safety assurance—A review. J. Food Sci. Technol. 2012, 49, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.M.; Bock, W.J.; Mikulic, P.; Chinnappan, R.; Ng, A.; Tolba, M.; Zourob, M. Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosens. Bioelectron. 2012, 35, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, R.; Sai, V.V.R.; Thakare, K.; Dhawangale, A.; Kundu, T.; Titus, S.; Verma, P.K.; Mukherji, S. Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength. Biosens. Bioelectron. 2011, 26, 3367–3370. [Google Scholar] [CrossRef] [PubMed]
- Valadez, A.M.; Lana, C.A.; Tu, S.I.; Morgan, M.T.; Bhunia, A.K. Evanescent wave fiber optic biosensor for salmonella detection in food. Sensors 2009, 9, 5810–5824. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Grant, S.A. A novel fret-based optical fiber biosensor for rapid detection of salmonella typhimurium. Biosens. Bioelectron. 2006, 21, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Morgan, M.T.; Bhunia, A.K. Detection of low levels of listeria monocytogenes cells by using a fiber-optic immunosensor. Appl. Environ. Microbiol. 2004, 70, 6138–6146. [Google Scholar] [CrossRef] [PubMed]
- Ohk, S.H.; Koo, O.K.; Sen, T.; Yamamoto, C.M.; Bhunia, A.K. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of listeria monocytogenes from food. J. Appl. Microbiol. 2010, 109, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, P.; Chavez, M.I.; Olguin, Y.; Sanchez, E.; Valdes, E.; Galindo, R.; Young, M.E. The application of polymerized lipid vesicles as colorimetric biosensors for real-time detection of pathogens in drinking water. Electron. J. Biotechnol. 2012, 15, 4. [Google Scholar] [CrossRef]
- Gnanaprakasa, T.J.; Oyarzabal, O.A.; Olsen, E.V.; Pedrosa, V.A.; Simonian, A.L. Tethered DNA scaffolds on optical sensor platforms for detection of hipO gene from Campylobacter jejuni. Sens. Actuators B Chem. 2011, 156, 304–311. [Google Scholar] [CrossRef]
- Su, W.; Lin, M.; Lee, H.; Cho, M.; Choe, W.S.; Lee, Y. Determination of endotoxin through an aptamer-based impedance biosensor. Biosens. Bioelectron. 2012, 32, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Marazuela, M.D.; Moreno-Bondi, M.C. Fiber-optic biosensors—An overview. Anal. Bioanal. Chem. 2002, 372, 664–682. [Google Scholar] [CrossRef] [PubMed]
- Länge, K.; Rapp, B.E.; Rapp, M. Surface acoustic wave biosensors: A review. Anal. Bioanal. Chem. 2008, 391, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Ye, Z.Z.; Si, C.Y.; Ying, Y.B. Subtractive inhibition assay for the detection of E. Coli O157: H7 using surface plasmon resonance. Sensors 2011, 11, 2728–2739. [Google Scholar] [CrossRef] [PubMed]
- Torun, O.; Boyaci, I.H.; Temur, E.; Tamer, U. Comparison of sensing strategies in spr biosensor for rapid and sensitive enumeration of bacteria. Biosens. Bioelectron. 2012, 37, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.C.; Yan, Y.R.; Li, Q.; Yu, T.X.; Cheng, W.; Wang, L.; Ju, H.X.; Ding, S.J. Label-free and high-sensitive detection of salmonella using a surface plasmon resonance DNA-based biosensor. J. Biotechnol. 2012, 160, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Wang, S.; Clarke, J.; Ja, S.J.; Goad, D.; Wald, L.; Flood, E.M.; Knobbe, E.; Hryniewicz, J.V.; Chu, S.T.; et al. A universal biosensing platform based on optical micro-ring resonators. Biosens. Bioelectron. 2008, 23, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Goeller, L.J.; Riley, M.R. Discrimination of bacteria and bacteriophages by raman spectroscopy and surface-enhanced raman spectroscopy. Appl. Spectrosc. 2007, 61, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dick, W.A.; Tuovinen, O.H. Fluorescence microscopy for visualization of soil microorganisms—A review. Biol. Fertil. Soils 2004, 39, 301–311. [Google Scholar]
- Sharma, H.; Mutharasan, R. Review of biosensors for foodborne pathogens and toxins. Sens. Actuators B Chem. 2013, 183, 535–549. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Chen, J.; Kinchla, A.J.; Nugen, S.R. Rapid detection of salmonella using a redox cycling-based electrochemical method. Food Control 2016, 62, 81–88. [Google Scholar] [CrossRef]
- Arora, P.; Sindhu, A.; Dilbaghi, N.; Chaudhury, A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens. Bioelectron. 2011, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nag, A.; Zia, A.I.; Li, X.; Mukhopadhyay, S.C.; Kosel, J. Novel sensing approach for LPG leakage detection: Part II: Effects of particle size, composition, and coating layer thickness. IEEE Sens. J. 2016, 16, 1088–1094. [Google Scholar] [CrossRef]
- Nag, A.; Zia, A.I.; Li, X.; Mukhopadhyay, S.C.; Kosel, J. Novel sensing approach for LPG leakage detection: Part I: Operating mechanism and preliminary results. IEEE Sens. J. 2016, 16, 996–1003. [Google Scholar] [CrossRef]
- Aizawa, M. Principles and applications of electrochemical and optical biosensors. Anal. Chim. Acta 1991, 250, 249–256. [Google Scholar] [CrossRef]
- Gau, J.J.; Lan, E.H.; Dunn, B.; Ho, C.M.; Woo, J.C.S. A mems based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosens. Bioelectron. 2001, 16, 745–755. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, P.; Gong, J.H.; Fang, L.C.; Deng, J.; Liang, W.B.; Zheng, J.S. Amperometric immunosensor for the detection of Escherichia coli O157: H7 in food specimens. Anal. Biochem. 2012, 421, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Jizhou, S.; Chao, B.; Lan, Q.; Shanhong, X. A micro amperometric immunosensor immobilized with electropolymerized staphylococcal protein a for the detection of salmonella typhimurium. In Proceedings of the 2009 4th Ieee International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 5–8 January 2009; pp. 295–298. [Google Scholar]
- Pohanka, M.; Skladai, P. Electrochemical biosensors—Principles and applications. J. Appl. Biomed. 2008, 6, 57–64. [Google Scholar]
- Neufeld, T.; Schwartz-Mittelmann, A.; Biran, D.; Ron, E.; Rishpon, J. Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. Anal. Chem. 2003, 75, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bashir, R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv. 2008, 26, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy Theory, Experiment and Applications, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005; p. 595. [Google Scholar]
- Radke, S.; Alocilja, E. Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sens. J. 2004, 4, 434–440. [Google Scholar] [CrossRef]
- Yang, L.J.; Li, Y.B.; Griffis, C.L.; Johnson, M.G. Interdigitated microelectrode (IME) impedance sensor for the detection of viable salmonella typhimurium. Biosens. Bioelectron. 2004, 19, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Mannoor, M.S.; Zhang, S.Y.; Link, A.J.; McAlpine, M.C. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc. Natl. Acad. Sci. USA 2010, 107, 19207–19212. [Google Scholar] [CrossRef] [PubMed]
- Primiceri, E.; Chiriacò, M.S.; de Feo, F.; Santovito, E.; Fusco, V.; Maruccio, G. A multipurpose biochip for food pathogen detection. Anal. Methods 2016, 8, 3055–3060. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Z.; Ying, Y. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors 2012, 12, 3449–3471. [Google Scholar] [CrossRef] [PubMed]
- Alahi, M.E.E.; Xie, L.; Mukhopadhyay, S.; Burkitt, L. A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. 2017, 64, 7333–7341. [Google Scholar] [CrossRef]
- Zia, A.I.; Mukhopadhyay, S.C.; Yu, P.-L.; Al-Bahadly, I.H.; Gooneratne, C.P.; Kosel, J. Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens. Bioelectron. 2015, 67, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Leung, H.; Mukhopadhyay, S.C.; Tian, M.; Zhou, J. Mechanism and experiment of planar electrode sensors in water pollutant measurement. IEEE Trans. Instrum. Meas. 2015, 64, 516–523. [Google Scholar] [CrossRef]
- Zia, A.I.; Rahman, M.S.A.; Mukhopadhyay, S.C.; Yu, P.-L.; Al-Bahadly, I.H.; Gooneratne, C.P.; Kosel, J.; Liao, T.-S. Technique for rapid detection of phthalates in water and beverages. J. Food Eng. 2013, 116, 515–523. [Google Scholar] [CrossRef]
- Rahman, M.S.A.; Mukhopadhyay, S.C.; Yu, P.-L.; Goicoechea, J.; Matias, I.R.; Gooneratne, C.P.; Kosel, J. Detection of bacterial endotoxin in food: New planar interdigital sensors based approach. J. Food Eng. 2013, 114, 346–360. [Google Scholar] [CrossRef]
- Syaifudin, A.M.; Mukhopadhyay, S.C.; Yu, P.-L.; Haji-Sheikh, M.J.; Chuang, C.-H.; Vanderford, J.D.; Huang, Y.-W. Measurements and performance evaluation of novel interdigital sensors for different chemicals related to food poisoning. IEEE Sens. J. 2011, 11, 2957–2965. [Google Scholar] [CrossRef]
- Syaifudin, A.M.; Jayasundera, K.; Mukhopadhyay, S. A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sens. Actuators B Chem. 2009, 137, 67–75. [Google Scholar] [CrossRef]
- Ercole, C.; Del Gallo, M.; Mosiello, L.; Baccella, S.; Lepidi, A. Escherichia coli detection in vegetable food by a potentiometric biosensor. Sens. Actuators B Chem. 2003, 91, 163–168. [Google Scholar] [CrossRef]
- Sandifer, J.R.; Voycheck, J.J. A review of biosensor and industrial applications of ph-isfets and an evaluation of honeywell’s “durafet”. Mikrochim. Acta 1999, 131, 91–98. [Google Scholar] [CrossRef]
- Gehring, A.G.; Patterson, D.L.; Tu, S.I. Use of a light-addressable potentiometric sensor for the detection of Escherichia coli O157: H7. Anal. Biochem. 1998, 258, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Masdor, N.A.; Altintas, Z.; Tothill, I.E. Sensitive detection of campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosens. Bioelectron. 2016, 78, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, S. Mass Sensitive Biosensors: Principles and Applications in Food; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Carmon, K.S.; Baltus, R.E.; Luck, L.A. A piezoelectric quartz crystal biosensor: The use of two single cysteine mutants of the periplasmic Escherichia coli glucose/galactose receptor as target proteins for the detection of glucose. Biochemistry 2004, 43, 14249–14256. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.H.; Huang, M.C.; Xiao, C.D.; Zhang, Y.; Zeng, X.Q.; Wang, P.G. Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal. Chem. 2007, 79, 2312–2319. [Google Scholar] [CrossRef] [PubMed]
- White, R.M.; Voltmer, F.W. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 1965, 7, 314–316. [Google Scholar] [CrossRef]
- Rocha-Gaso, M.I.; March-Iborra, C.; Montoya-Baides, A.; Arnau-Vives, A. Surface generated acoustic wave biosensors for the detection of pathogens: A review. Sensors 2009, 9, 5740–5769. [Google Scholar] [CrossRef] [PubMed]
- Hammer, M.U.; Brauser, A.; Olak, C.; Brezesinski, G.; Goldmann, T.; Gutsmann, T.; Andra, J. Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against escherichia coil and proteus mirabilis. Biochem. J. 2010, 427, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Silk, T.M.; Donnelly, C.W. Increased detection of acid-injured Escherichia coli O157: H7 in autoclaved apple cider by using nonselective repair on trypticase soy agar. J. Food Protect. 1997, 60, 1483–1486. [Google Scholar] [CrossRef]
- Goodridge, L.; Chen, J.R.; Griffiths, M. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157: H7. Appl. Environ. Microbiol. 1999, 65, 1397–1404. [Google Scholar] [PubMed]
- Czajka, J.; Batt, C.A. A solid phase fluorescent capillary immunoassay for the detection of Escherichia coli O157: H7 in ground beef and apple cider. J. Appl. Microbiol. 1996, 81, 601–607. [Google Scholar] [CrossRef]
- Yu, L.S.L.; Reed, S.A.; Golden, M.H. Time-resolved fluorescence immunoassay (TRFIA) for the detection of Escherichia coli O157: H7 in apple cider. J. Microbiol. Methods 2002, 49, 63–68. [Google Scholar] [CrossRef]
- Blais, B.W.; Leggate, J.; Bosley, J.; Martinez-Perez, A. Comparison of fluorogenic and chromogenic assay systems in the detection of Escherichia coli O157 by a novel polymyxin-based elisa. Lett. Appl. Microbiol. 2004, 39, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Daly, P.; Collier, T.; Doyle, S. PCR-elisa detection of Escherichia coli in milk. Lett. Appl. Microbiol. 2002, 34, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Rogelj, S.; Kieft, T.L. Rapid detection of Escherichia coli O157: H7 by immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 2005, 99, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Tims, T.B.; Lim, D.V. Confirmation of viable E. coli O157: H7 by enrichment and PCR after rapid biosensor detection. J. Microbiol. Methods 2003, 55, 141–147. [Google Scholar] [CrossRef]
- Homola, J.; Hegnerová, K.; Vala, M. Surface plasmon resonance biosensors for detection of foodborne pathogens and toxins. Proc. SPIE 2009, 7167, 716705. [Google Scholar]
- Brooks, B.W.; Devenish, J.; Lutze-Wallace, C.L.; Milnes, D.; Robertson, R.H.; Berlie-Surujballi, G. Evaluation of a monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Campylobacter fetus in bovine preputial washing and vaginal mucus samples. Vet. Microbiol. 2004, 103, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 1999, 14, 599–624. [Google Scholar] [CrossRef]
- Mubammad-Tahir, Z.; Alocilja, E.C. A conductometric biosensor for biosecurity. Biosens. Bioelectron. 2003, 18, 813–819. [Google Scholar] [CrossRef]
- Radke, S.A.; Alocilja, E.C. A high density microelectrode array biosensor for detection of E. coli O157: H7. Biosens. Bioelectron. 2005, 20, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Song, Y.; Wei, T.; Li, H.; Du, D.; Zhu, M.-J.; Lin, Y. Sensitive detection of Escherichia coli O157: H7 using pt–au bimetal nanoparticles with peroxidase-like amplification. Biosens. Bioelectron. 2016, 77, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Tripp, R.A.; Anderson, L.J.; Nie, S. Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes. J. Virol. 2005, 79, 8625–8628. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, E.L.; House, F.; Utley, T.J.; Crowe, J.E.; Wright, D.W. Progression of respiratory syncytial virus infection monitored by fluorescent quantum dot probes. Nano Lett. 2005, 5, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ang, S.; Liu, W.-T. Quantum dots as a novel immunofluorescent detection system for cryptosporidium parvum and giardia lamblia. Appl. Environ. Microbiol. 2004, 70, 597–598. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-J.; Huang, J.-L.; Meng, W.-J.; Shen, M.; Jiao, X.-A. A reusable capacitive immunosensor for detection of salmonella spp. Based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal. Chim. Acta 2009, 647, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Lin, Z.; Zhang, D.; Wang, Y.; Hou, B. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens. Bioelectron. 2011, 26, 1959–1964. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Q.; Hu, Z.; Zhang, Y.; Wu, C.; Yang, M.; Wang, P. A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157: H7 DNA detection. Talanta 2009, 78, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Norman, R.S.; Stone, J.W.; Gole, A.; Murphy, C.J.; Sabo-Attwood, T.L. Targeted photothermal lysis of the pathogenic bacteria, pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008, 8, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Tok, J.B.H.; Chuang, F.; Kao, M.C.; Rose, K.A.; Pannu, S.S.; Sha, M.Y.; Chakarova, G.; Penn, S.G.; Dougherty, G.M. Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew. Chem. Int. Ed. 2006, 45, 6900–6904. [Google Scholar] [CrossRef] [PubMed]
- So, H.M.; Park, D.W.; Jeon, E.K.; Kim, Y.H.; Kim, B.S.; Lee, C.K.; Choi, S.Y.; Kim, S.C.; Chang, H.; Lee, J.O. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 2008, 4, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Choi, W.; Lee, I.; Cho, B.-K.; Jun, S. Rapid detection of multiple foodborne pathogens using a nanoparticle-functionalized multi-junction biosensor. Biosens. Bioelectron. 2016, 77, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, H.; Zhang, P.; Sun, C.; Wang, X.; Wang, X.; Yang, R.; Wang, C.; Zhou, L. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci. Rep. 2016, 6, 21342. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Biswas, A.; Choi, K.; Pal, U. Methods for rapid detection of foodborne pathogens: An overview. Am. J. Food Technol. 2011, 6, 87–102. [Google Scholar] [CrossRef]
- Zhang, G. Foodborne pathogenic bacteria detection: An evaluation of current and developing methods. Meducator 2013, 1, 24. [Google Scholar]
- Pérez-López, B.; Merkoçi, A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Technol. 2011, 22, 625–639. [Google Scholar] [CrossRef]
Hazard | Percentage Foodborne (%) | |||||
---|---|---|---|---|---|---|
WHO (2015) a | USA (2011) | Canada (2015) | Australia (2005, 2014) | England and Wales (2002) | Netherlands (2008) | |
Bacteria | ||||||
Bacillus cereus | 100 | 100 | 99 | 100 | 100 | 90 |
Campylobacter spp. | 51–76 | 80 | 62 | 77 b | 80 | 42 |
Clostridium perfringens | 100 | 100 | 93 | 98 b | 94 | 91 |
Shiga-toxin-producing Escherichia coli(STEC) O157:H7 | 40–60 c | 68 | 61 | 56 b,c | 63 | 40 |
STEC non-O157 | 40–60 c | 82 | 60 | 56 b,c | 63 | 42 |
Listeria monocytogenes | 100 | 99 | 77 | 98 b | 99 | 69 |
Salmonella non-typhoidal | 46–76 | 94 | 63 | 72 b | 92 | 55 |
Shigella spp. | 7–36 | 31 | 26 | 12 b | 8 | NE |
Staphylococcus aureus | 100 | 100 | 78 | 100 | 96 | 87 |
Yersinia enterocolitica | NE | 90 | 83 | 75 | 90 | NE |
Parasitic | ||||||
Cryptosporidium parvum | 8–16 | 8 | 11 | 10 | 6 | 12 |
Giardia lamblia | 1–14 | 7 | 7 | 5 | 10 | 13 |
Viruses | ||||||
Hepatitis A virus | 2–42 | 7 | 30 | 12 b | 11 | 11 |
Norovirus | 1–26 | 26 | 18 | 18 b | NE | 17 |
Name of the Method | Sample | Limit of Detection (CFU mL−1) | Response Time (Approx.) | Reference |
---|---|---|---|---|
Conventional Methods | ||||
Culturing | Apple cider | Low CFUs | 1 day to 7 days | [124] |
Fluorescence-based bacteriophage assay | Broth | 10.00–100.00 | 10 h | [125] |
Capillary-based immunoassay | Ground beef and apple cider | 0.5–1.00 | 7 h | [126] |
Fluorescence-based immunoassay | Apple cider | 10.00–100.00 | 6 h | [127] |
ELISA | Ground beef, pork, turkey, Fermented sausage, salad, oriental salad and sausage | 1.20 × 103 | 1 day | [128] |
ELISA based PCR | Milk | 100.00 | 5 h | [129] |
Real-Time based PCR | Ground beef | 5 cell | 5 h 20 min | [130] |
Biosensing Methods | ||||
Fibre Optic-based Immunosensor | Broth | 2.90 × 103 | 10 h | [131] |
SPR | Milk | 102 | 60 min | [132] |
QCM-based Immunosensor | Cow’s preputial washing and vaginal mucus | 103 | 170 min | [133] |
Amperometric | Solid Food | 100.00–600.00 | 30 min | [134] |
Conductimetric | Water | 79.00 | 10 min | [135] |
Impedimetric | Romaine lettuce wash water | 104 in culture and 107 in water | 10 min | [136] |
Method of Detection | Advantages | Limitations | Cost | References |
---|---|---|---|---|
Optical methods | Sensitivity is high, nearly can detect in real time and detection system is label-free | Cost is very high | High | [149,150] |
Electrochemical methods | Requires large quantity of sample numbers, might be automatic and detection system is label-free | Specificity is low and not suitable for low sensitivity and needs a lot of washing steps | Low | [149,150] |
Mass-based methods | Cheaper than other methods, easy operation, can be able to detect in real-time; moreover, detection is label-free | Specificity and sensitivity are low, requires long incubation time and problematic to regenerate the crystal surface | Low | [149,150] |
Nanomaterial-based Sensors | User-friendly measurement and measurement can be done in real time | Concerns are there regarding the toxicity of the nanomaterial and may not be possible to regenerate the sensor | Medium | [151] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahi, M.E.E.; Mukhopadhyay, S.C. Detection Methodologies for Pathogen and Toxins: A Review. Sensors 2017, 17, 1885. https://doi.org/10.3390/s17081885
Alahi MEE, Mukhopadhyay SC. Detection Methodologies for Pathogen and Toxins: A Review. Sensors. 2017; 17(8):1885. https://doi.org/10.3390/s17081885
Chicago/Turabian StyleAlahi, Md Eshrat E., and Subhas Chandra Mukhopadhyay. 2017. "Detection Methodologies for Pathogen and Toxins: A Review" Sensors 17, no. 8: 1885. https://doi.org/10.3390/s17081885
APA StyleAlahi, M. E. E., & Mukhopadhyay, S. C. (2017). Detection Methodologies for Pathogen and Toxins: A Review. Sensors, 17(8), 1885. https://doi.org/10.3390/s17081885