Quantification of DNA by a Thermal-Durable Biosensor Modified with Conductive Poly(3,4-ethylenedioxythiophene)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pt Electrode Modification
2.3. Designs of Probe and Target DNA
2.4. DNA Biosensor Fabrication and Performance
3. Results and Discussion
3.1. Constructing an AuNP-PEDOT/Pt Electrode
3.2. Construction of an AuNP-PEDOT/PEDOT:PSS/Pt Electrode
3.3. DNA Biosensor Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Teles, F.R.R.; Fonseca, L.R. Trends in DNA biosensors. Talanta 2008, 77, 606–623. [Google Scholar] [CrossRef]
- Mao, X.; Ma, Y.Q.; Zhang, A.G.; Zhang, L.R.; Zeng, L.W.; Liu, G.D. Disposable Nucleic Acid Biosensors Based on Gold Nanoparticle Probes and Lateral Flow Strip. Anal. Chem. 2009, 81, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Kerman, K.; Kobayashi, M.; Tamiya, E. Recent trends in electrochemical DNA biosensor technology. Meas. Sci. Technol. 2004, 15, R1–R11. [Google Scholar] [CrossRef]
- Liu, A.L.; Wang, K.; Weng, S.H.; Lei, Y.; Lin, L.Q.; Chen, W.; Lin, X.H.; Chen, Y.Z. Development of electrochemical DNA biosensors. TrAC Trends Anal. Chem. 2012, 37, 101–111. [Google Scholar] [CrossRef]
- Ravera, M.; Bagni, G.; Mascini, M.; Osella, D. DNA-metallodrugs interactions signaled by electrochemical biosensors: An overview. Bioinorg. Chem. Appl. 2007, 2007, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Feng, Y.; Dong, P.J.; Tang, B. Gold nanoparticles modified electrode via a mercapto-diazoaminobenzene monolayer and its development in DNA electrochemical biosensor. Biosens. Bioelectron. 2010, 25, 2084–2088. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.M.; Rahim, R.A.; Ibraheem, I.J.; Loong, F.K.; Hisham, H.; Hashim, U.; Al-Douri, Y. Application of Gold Nanoparticles for Electrochemical DNA Biosensor. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Li, J.H.; Hu, J.B.; Ding, X.Q.; Li, Q.L. DNA electrochemical biosensor based on functional gold nanoparticles-amplification. Chem. J. Chin. Univ. 2005, 26, 1432–1436. [Google Scholar]
- Chen, C.C.; Gu, Y.S. Enhancing the sensitivity and stability of HRP/PANI/Pt electrode by implanted bovine serum albumin. Biosens. Bioelectron. 2008, 23, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.C.; Xie, H.; Chen, N.Y.; Yu, H.H. Trinity DNA Detection Platform by Ultrasmooth and Functionalized PEDOT Biointerfaces. ACS Appl. Mater. Interfaces 2009, 1, 1414–1419. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Park, C.M.; Kim, J.E.; Suh, K.S. Electronic, chemical and structural change induced by organic solvents in tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-OTs). Synth. Met. 2005, 149, 169–174. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Sumathi, C.; Dharuman, V.; Wilson, J. Gold nanoparticles functionalized poly(3,4-ethylenedioxythiophene) thin film for highly sensitive label free DNA detection. Anal. Methods 2013, 5, 684–689. [Google Scholar] [CrossRef]
- Kros, A.; Sommerdijk, N.A.J.M.; Nolte, R.J.M. Poly(pyrrole) versus poly(3,4-ethylenedioxythiophene): Implications for biosensor applications. Sens. Actuators B 2005, 106, 289–295. [Google Scholar] [CrossRef]
- Yamato, H.; Ohwa, M.; Wernet, W. Stability of Polypyrrole and Poly(3,4-Ethylenedioxythiophene) for Biosensor Application. J. Electroanal. Chem. 1995, 397, 163–170. [Google Scholar] [CrossRef]
- Tansil, N.C.; Kantchev, E.A.B.; Gao, Z.Q.; Yu, H.H. Electropolymerization of intercalator-grafted conducting polymer for direct and amplified DNA detection. Chem. Commun. 2011, 47, 1533–1535. [Google Scholar] [CrossRef] [PubMed]
- Spain, E.; Keyes, T.E.; Forster, R.J. DNA sensor based on vapour polymerised pedot films functionalised with gold nanoparticles. Biosens. Bioelectron. 2013, 41, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Lai, M.T. The potential application of a poly(3,4-ethylenedioxythiopene) modified platinum DNA biosensor in mutation analysis. Biosens. Bioelectron. 2012, 31, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Meric, B.; Kerman, K.; Ozkan, D.; Kara, P.; Erensoy, S.; Akarca, U.S.; Mascini, M.; Ozsoz, M. Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus from PCR amplified real samples by using methylene blue. Talanta 2002, 56, 837–846. [Google Scholar] [CrossRef]
- Chang, H.X.; Yuan, Y.; Shi, N.L.; Guan, Y.F. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Anal. Chem. 2007, 79, 5111–5115. [Google Scholar] [CrossRef] [PubMed]
- Mascini, M.; Palchetti, I.; Marrazza, G. DNA electrochemical biosensors. Fresenius J. Anal. Chem. 2001, 369, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Brett, A.M.O.; da Silva, L.A.; Fujii, H.; Mataka, S.; Thiemann, T. Detection of the damage caused to DNA by a thiophene-S-oxide using an electrochemical DNA-biosensor. J. Electroanal. Chem. 2003, 549, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 20–22. [Google Scholar] [CrossRef]
- Gu, Y.S.; Fang, T.T.; Chao, T.H. Modification of allele-specific polymerase chain reaction for hMYH mutation analysis in Taiwanese patients with colorectal cancer. J. Taiwan Inst. Chem. Eng. 2011, 42, 572–575. [Google Scholar] [CrossRef]
- Ding, L.; Zhai, J.P.; Bond, A.M.; Zhang, J. Polystyrenesulfonate doped poly(Hydroxymethyl 3,4-Ethylenedioxythiophene) stabilized Au nanoparticle modified glassy carbon electrode as a reusable sensor for mercury(II) detection in chloride media. J. Electroanal. Chem. 2013, 704, 96–101. [Google Scholar] [CrossRef]
- Xu, F.C.; Ren, S.B.; Li, J.S.; Bi, X.; Gu, Y.S. Molecular Assembly of a Durable HRP-AuNPs/PEDOT:BSA/Pt Biosensor with Detailed Characterizations. Sensors 2018, 18, 1823. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Tseng, P.-Y.; Bi, X.; Yang, J.H.C. Quantification of DNA by a Thermal-Durable Biosensor Modified with Conductive Poly(3,4-ethylenedioxythiophene). Sensors 2018, 18, 3684. https://doi.org/10.3390/s18113684
Gu Y, Tseng P-Y, Bi X, Yang JHC. Quantification of DNA by a Thermal-Durable Biosensor Modified with Conductive Poly(3,4-ethylenedioxythiophene). Sensors. 2018; 18(11):3684. https://doi.org/10.3390/s18113684
Chicago/Turabian StyleGu, Yesong, Po-Yuan Tseng, Xiang Bi, and Jason H. C. Yang. 2018. "Quantification of DNA by a Thermal-Durable Biosensor Modified with Conductive Poly(3,4-ethylenedioxythiophene)" Sensors 18, no. 11: 3684. https://doi.org/10.3390/s18113684
APA StyleGu, Y., Tseng, P. -Y., Bi, X., & Yang, J. H. C. (2018). Quantification of DNA by a Thermal-Durable Biosensor Modified with Conductive Poly(3,4-ethylenedioxythiophene). Sensors, 18(11), 3684. https://doi.org/10.3390/s18113684