Analysis of Flow Cytometric Fluorescence Lifetime with Time-Delay Estimation of Pulse Signals
Abstract
:1. Introduction
2. Theory
2.1. Flow Cytometric Fluorescence Lifetime
2.2. Forward-Scattered and Fluorescent Light Pulses
2.3. Time-Delay Estimation
3. Materials and Method
3.1. Time-Delay Estimation with Microspheres
3.2. Time-Delay Calibration of Photovoltaic Conversion and Electric Systems
4. Results and Discussion
4.1. Time-Delay Estimation
4.2. Curve Fitting
4.3. Verification with Pulse Width Variation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
FCM | Flow cytometry |
ADC | Analog-to-Digital Converter |
MCZT | Modified Chirp Z-Transform |
FICP | Fine Interpolation of Correlation Peak |
PMT | Photomultiplier tube |
LED | Light-emitting diodes |
MSPS | Mega samples per second |
RMSE | Root Mean Square Error |
SSR | Sum of Squares of the Regression |
SST | Total Sum of Squares |
SD | Standard Deviation |
RSD | Relative standard deviation |
CV | Coefficients of Variation |
References
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ye, C.; Periasamy, A. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein location. Microsc. Res. Tech. 2004, 63, 72–80. [Google Scholar]
- Ardeshirpour, Y.; Chernomordik, V.; Hassan, M.; Zielinski, R.; Capala, J.; Gandjbakhche, A. In vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment. Clin. Cancer Res. 2014, 2, 3531–3539. [Google Scholar] [CrossRef] [PubMed]
- Becker, W. Fluorescence lifetime imaging-techniques and applications. J Microsc. 2012, 247, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Jahn, K.; Buschmann, V.; Hille, C. Simultaneous fluorescence and phosphorescence lifetime imaging microscopy in living cells. Sci. Rep. UK 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Shcheslavskiy, V.I.; Neubauer, A.; Bukowiecki, R.; Dinter, F.; Becker, W. Combined fluorescence and phosphorescence lifetime imaging. Appl. Phys. Lett. 2016, 108. [Google Scholar] [CrossRef]
- Berezin, M.Y.; Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 2010, 110, 2641–2684. [Google Scholar] [CrossRef] [PubMed]
- Herman, P.; Maliwal, B.P.; Lin, H.J.; Lakowicz, J.R. Frequency-domain fluorescence microscopy with LED as a light source. J. Microsc. 2001, 203, 176–181. [Google Scholar] [CrossRef]
- Cao, R.F.; Naivar, M.A.; Wilder, M.; Houston, J.P. Expanding the potential of standard flow cytometry by extracting fluorescence lifetime form cytometric pulse shifts. Cytom. Part A 2014, 85, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Gohar, A.V.; Cao, R.F.; Jenkins, P.; Li, W.; Houson, K.D. Subcellular location-dependent changes inEGFP fluorescence lifetime measured by time resolved flow cytometry. Biomed. Opt. Express 2013, 4, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Steinkamp, J.A.; Crissman, H.A. Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry. Cytometry 1993, 14, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Deka, C.; Steinkamp, J.A. Time-resolved fluorescence-decay measurement and analysis on single cells by flow cytometry. Appl. Opt. 1996, 35, 4481–4489. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.F.; Pankayatselvan, V.; Houston, J.P. Cytometric sorting based on the fluorescence lifetime of spectrally overlapping signals. Opt. Express 2013, 21, 14816–14831. [Google Scholar] [CrossRef] [PubMed]
- Deka, C.; Sklar, L.A. Fluorescence lifetime measurements in a flow cytometer by ampliture demodulation using digital data acquisition technique. Cytometry 1994, 17, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, B.G.; Ladasky, J.J.; Lakowicz, J.R.; Berndt, K.; Hoffman, R.A. Phase-resolved fluorescence lifetime measurements for flow cytometry. Cytometry 1993, 14, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Houston, J.P.; Naivar, M.A.; Jenkins, P.; Freyer, J.P. Capture of fluorescence decay times by flow cytometry. Curr. Protoc. Cytom. 2015, 59, 1.25.1–1.25.21. [Google Scholar]
- Ke, Z.; Lin, J.; Yang, W. Phase-selective fluorescence of doped Ge2sb2Te5 phase-change memory thin films. Chin. Opt. Lett. 2015, 13, 121601–121604. [Google Scholar]
- Naivar, M.M.; Goodwin, P.M.; Graves, S.W. Single particle high resolution spectral analysis flow cytometry. Cytom. Part A 2008, 69A, 842–851. [Google Scholar]
- Zilmer, N.A.; Godavarti, M.; Rodriguez, J.J.; Yopp, T.A.; Galbraith, G.M. Flow cytometric analysis using digital signal processing. Cytometry 1995, 20, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Feder, I.; Duadi, H.; Fixler, D. Experimental system for measuring the full scattering profile of circular phantoms. Biomed. Opt. Express 2015, 6, 2877–2886. [Google Scholar] [CrossRef] [PubMed]
- Matti, K.; Antti, K.; Artashes, K. Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level. Biomed. Opt. Express 2011, 2, 1803–1811. [Google Scholar]
- Buryakina, T.Y.; Su, P.T.; Chang, C.A.; Fan, H.F.; Kao, F.J. Metabolism of HeLa cells revealed through autofluorescence lifetime upon infection with enterohe-morrhagic Escherichia coli. J. Biomed. Opt. 2012, 17. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, A.; Christopher, B.; Ramesh, R. Blind and reference-free fluorescence lifetime estimation via consumer time-of-flight sensors. Optica 2015, 2, 965–973. [Google Scholar] [CrossRef]
- Batista, A.; Breunig, H.G.; Uchugonova, A.; Morgado, A.M.; König, K. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with 12-femtosecond laser microscope. J. Biomed. Opt. 2016, 21, 036002.1–036002.11. [Google Scholar] [CrossRef] [PubMed]
- Ferrie, J.; Nawrocki, C.; Carter, G. Partitioned and modified chirp Z-transform: Signal processing technique for simultaneous multi-frequency evaluation of the surface reradiated spectrum in slowly varying environments. In Proceedings of the International Conference on Engineering in the Ocean Environment, Seattle, WA, USA, 25–28 September 1973. [Google Scholar]
- Knapp, C.H.; Carter, G.C. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 320–327. [Google Scholar] [CrossRef]
Signals | Conversion Rate (MSPS) | Curves Fitting Results | Evaluation Indexes | |||
---|---|---|---|---|---|---|
K1 | K2 | K3 | RMSE | R-Squared | ||
fs | 500 | 0.7357 | 2065 | 639.3 | 0.0201 | 0.9928 |
100 | 0.7386 | 412.3 | 128.9 | 0.0201 | 0.9928 | |
fl1 | 500 | 1.309 | 2446 | 615.8 | 0.0182 | 0.9981 |
100 | 1.308 | 488.3 | 123 | 0.0181 | 0.9982 | |
fl2 | 500 | 2.901 | 2440 | 611.6 | 0.0290 | 0.9990 |
100 | 2.898 | 486.9 | 122 | 0.0276 | 0.9991 | |
fl3 | 500 | 1.475 | 2453 | 625.9 | 0.0288 | 0.9963 |
100 | 1.475 | 489.5 | 125.2 | 0.0286 | 0.9964 |
Peak Location (ns) | Time-Delay (ns) | |||||||
---|---|---|---|---|---|---|---|---|
fs | fl1 | fl2 | fl3 | Δt1 | Δt2 | Δt3 | ||
FICP | ---- | ---- | ---- | ---- | 765.6 | 748.4 | 772.6 | |
Curve fitting | 500 MSPS | 4130 | 4892 | 4880 | 4906 | 762 | 750 | 776 |
100 MSPS | 4123 | 4883 | 4869 | 4895 | 760 | 746 | 772 |
τ1 | τ2 | τ3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (ns) | SD (ns) | RSD (%) | Mean (ns) | SD (ns) | RSD (%) | Mean (ns) | SD (ns) | RSD(%) | ||
FICP | 7.36 | 1.58 | 18.90 | 4.85 | 1.16 | 23.92 | 10.33 | 1.65 | 15.97 | |
Curve fitting | 500 MSPS | 7.24 | 1.76 | 21.36 | 4.92 | 1.24 | 25.20 | 10.41 | 1.88 | 18.06 |
100 MSPS | 7.17 | 1.93 | 23.62 | 5.11 | 1.59 | 31.12 | 11.54 | 2.13 | 18.46 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Zhang, W.; Dong, M.; Lou, X. Analysis of Flow Cytometric Fluorescence Lifetime with Time-Delay Estimation of Pulse Signals. Sensors 2018, 18, 442. https://doi.org/10.3390/s18020442
Zhu L, Zhang W, Dong M, Lou X. Analysis of Flow Cytometric Fluorescence Lifetime with Time-Delay Estimation of Pulse Signals. Sensors. 2018; 18(2):442. https://doi.org/10.3390/s18020442
Chicago/Turabian StyleZhu, Lianqing, Wenchang Zhang, Mingli Dong, and Xiaoping Lou. 2018. "Analysis of Flow Cytometric Fluorescence Lifetime with Time-Delay Estimation of Pulse Signals" Sensors 18, no. 2: 442. https://doi.org/10.3390/s18020442
APA StyleZhu, L., Zhang, W., Dong, M., & Lou, X. (2018). Analysis of Flow Cytometric Fluorescence Lifetime with Time-Delay Estimation of Pulse Signals. Sensors, 18(2), 442. https://doi.org/10.3390/s18020442