Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Selection and Deterioration Treatment
2.2. FT-NIR Spectroscopy Acquisition
2.3. Germination Test
2.4. Dataset and Model Verification
2.5. Spectral Data Preprocessing
2.6. Partial Least Squares Discriminant Analysis
3. Results and Discussion
3.1. Spectral Interpretation
3.2. Heat-Damaged Kernel Detection Models
3.3. Artificially Aged Kernel Detection Models
3.4. Comprehensive Discriminant Models
4. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Williams, M.M. Relationships among phenotypic traits of sweet corn and tolerance to crowding stress. Field Crop. Res. 2016, 185, 45–50. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, L.; Deng, Y.; Chi, J.; Zhang, Y.; Wei, Z.; Zhang, M. Phenolic content and antioxidant activity of eight representative sweet corn varieties grown in South China. Int. J. Food Prop. 2017, 20, 3043–3055. [Google Scholar] [CrossRef]
- Lee, S.S.; Yun, S.H.; Seo, J.M. Optimum harvest time for high quality seed production of sweet and super sweet corn hybrids. Korean J. Crop Sci. 2004, 49, 373–380. [Google Scholar]
- Wann, E.V. Seed vigor and respiration of maize kernels with different endosperm genotypes. J. Am. Soc. Hortic. Sci. 1980, 105, 31–34. [Google Scholar]
- Young, T.E.; Juvik, J.A.; Demason, D.A. Changes in carbohydrate composition and α-amylase expression during germination and seedling growth of starch-deficient endosperm mutants of maize. Plant Sci. 1997, 129, 175–189. [Google Scholar] [CrossRef]
- Zan, G.H.; Brewbaker, J.L. Seed quality of isogenic endosperm mutants in sweet corn. Maydica 1999, 44, 271–277. [Google Scholar]
- Lee, M.H. Seed deterioration response of different genes of sweet corn during long-term storage. Korean J. Crop Sci. 2001, 46, 317–320. [Google Scholar]
- He, L.; Burris, J.S. Respiration and carbohydrate metabolism during germination of sh2 and Sh2 sweet corn seed. Hortsci. A Publ. Am. Soc. Hortic. Sci. 1992, 27, 1306–1308. [Google Scholar]
- Singh, I.; Langyan, S.; Yadava, P. Sweet corn and corn-based sweeteners. Sugar Tech 2014, 16, 144–149. [Google Scholar] [CrossRef]
- Gupta, M.L.; George, D.L.; Parwata, I.G.M.A. Effect of harvest time and drying on supersweet corn seed quality. Seed Sci. Technol. 2005, 33, 167–176. [Google Scholar] [CrossRef]
- Lee, H.S.; Jeon, Y.A.; Lee, Y.Y.; Lee, G.A.; Raveendar, S.; Ma, K.H. Large-scale screening of intact tomato seeds for viability using near infrared reflectance spectroscopy (NIRS). Sustainability 2017, 9, 618. [Google Scholar] [CrossRef]
- International Seed Testing Association (ISTA). International Rules for Seed Testing, Chapter 5: The Germination Test; International Seed Testing Association: Bassersdorf, Switzerland, 1996. [Google Scholar]
- Cottrell, H.J. Tetrazolium Salt as a Seed Germination Indicator. Ann. Appl. Biol. 1948, 35, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Norris, K.H.; Hart, J.R. Direct spectrophotometric determination of moisture content of grain and seeds. J. Near Infrared Spectrosc. 1965, 4, 19–25. [Google Scholar]
- Agelet, L.E.; Hurburgh, C.R. Limitations and current applications of near infrared spectroscopy for single seed analysis. Talanta 2014, 121, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, Q.G.; Zhu, Q.B.; Qin, J.W.; Huang, G. Review of seed quality and safety tests using optical sensing technologies. Seed Sci. Technol. 2015, 43, 337–366. [Google Scholar] [CrossRef]
- Rahman, A.; Cho, B.K. Assessment of seed quality using non-destructive measurement techniques: A review. Seed Sci. Res. 2016, 26, 285–305. [Google Scholar] [CrossRef]
- Min, T.G.; Kang, W.S. Nondestructive classification between normal and artificially aged corn (Zea mays L.) seeds using near infrared spectroscopy. Korean J. Crop Sci. 2008, 53, 314–319. [Google Scholar]
- Agelet, L.E.; Ellis, D.D.; Duvick, S.; Goggi, A.S.; Hurburgh, C.R.; Gardner, C.A. Feasibility of near infrared spectroscopy for analyzing corn kernel damage and viability of soybean and corn kernels. J. Cereal Sci. 2012, 55, 160–165. [Google Scholar] [CrossRef]
- Ambrose, A.; Kandpal, L.M.; Kim, M.S.; Lee, W.H.; Cho, B.K. High speed measurement of corn seed viability using hyperspectral imaging. Infrared Phys. Technol. 2016, 75, 173–179. [Google Scholar] [CrossRef]
- Ambrose, A.; Lohumi, S.; Lee, W.H.; Cho, B.K. Comparative nondestructive measurement of corn seed viability using Fourier Transform near-infrared (FT-NIR) and Raman spectroscopy. Sens. Actuators B Chem. 2016, 224, 500–506. [Google Scholar] [CrossRef]
- Jia, S.; Yang, L.; An, D.; Liu, Z.; Yan, Y.; Li, S.; Zhang, X.; Zhu, D.; Gu, J. Feasibility of analyzing frost-damaged and non-viable maize kernels based on near infrared spectroscopy and chemometrics. J. Cereal Sci. 2016, 69, 145–150. [Google Scholar] [CrossRef]
- Kusumaningrum, D.; Lee, H.; Lohumi, S.; Mo, C.; Kim, M.S.; Cho, B.K. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy. J. Sci. Food Agric. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.K.; Cho, B.K.; Kang, J.S.; Lee, K.J. Study on non-destructive sorting technique for lettuce seed using fourier transform near-infrared spectrometer. J. Agric. Sci. 2012, 39, 111–116. [Google Scholar]
- Kim, G.; Kim, G.H.; Ahn, C.K.; Yoo, Y.; Cho, B.K. Mid-infrared lifetime imaging for viability evaluation of lettuce seeds based on time-dependent thermal decay characterization. Sensors 2013, 13, 2986–2996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, C.K.; Mo, C.Y.; Kang, J.S.; Cho, B.K. Nondestructive classification of viable and non-viable radish (Raphanus sativus L.) seeds using hyperspectral reflectance imaging. J. Biosyst. Eng. 2012, 37, 411–419. [Google Scholar] [CrossRef]
- Shrestha, S.; Knapič, M.; Žibrat, U.; Deleuran, L.C.; Gislum, R. Single seed near-infrared hyperspectral imaging in determining tomato (Solanum lycopersicum L.) seed quality in association with multivariate data analysis. Sens. Actuators B Chem. 2016, 237, 1027–1034. [Google Scholar]
- Mo, C.; Kim, G.; Lee, K.; Kim, M.S.; Cho, B.K.; Lim, J.; Kang, S. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging. Sensors 2014, 14, 7489–7504. [Google Scholar] [PubMed]
- Seo, Y.W.; Ahn, C.K.; Lee, H.; Park, E.; Mo, C.; Cho, B.K. Non-destructive sorting techniques for viable pepper (Capsicum annuum L.) seeds using Fourier Transform near-infrared and Raman spectroscopy. J. Biosyst. Eng. 2016, 41, 51–59. [Google Scholar]
- Lohumi, S.; Mo, C.; Kang, J.S.; Hong, S.J.; Cho, B.K. Nondestructive evaluation for the viability of watermelon (Citrullus lanatus) seeds using Fourier Transform near infrared spectroscopy. J. Biosyst. Eng. 2013, 38, 312–317. [Google Scholar] [CrossRef]
- Bae, H.; Seo, Y.W.; Yong, K.D.; Lohumi, S.; Park, E.; Cho, B.K. Development of non-destructive sorting technique for viability of watermelon seed by using hyperspectral image processing. J. Korean Soc. Nondestruct. Test. 2016, 36, 35–44. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Lohumi, S.; Kim, M.S.; Kang, J.S.; Cho, B.K. Near-Infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sens. Actuators B Chem. 2016, 229, 534–544. [Google Scholar] [CrossRef]
- Zhang, S.T.; Liang, K.Q.; Zhang, D.H.; Liang, Y.F.; Su, J.H. Breeding of yellow-white supersweet corn Huameitian NO. 8. Guangdong Agric. Sci. 2010, 37, 30–31. (In Chinese) [Google Scholar]
- Qu, X.L.; Liang, K.Q.; Zhang, D.H.; Liang, Y.F.; Zhang, S.T.; Rong, J.X. The parental character and high-yield production technique of supersweet corn Huameitian NO. 8. Bull. Agric. Sci. Technol. 2015, 11, 174–176. (In Chinese) [Google Scholar]
- Wang, D.; Dowell, F.E.; Chung, D.S. Assessment of heat-damaged wheat kernels using near-infrared spectroscopy. Cereal Chem. 2001, 78, 625–628. [Google Scholar] [CrossRef]
- Manley, M.; Williams, P.; Nilsson, D.; Geladi, P. Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels. J. Agric. Food Chem. 2009, 57, 8761–8769. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Papa, E.; Gramatica, P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem. Res. Toxicol. 2006, 19, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Tigabu, M.; Odén, P.C. Discrimination of viable and empty seeds of Pinus patula Schiede & Deppe with near-infrared spectroscopy. New For. 2003, 25, 163–176. [Google Scholar]
- Hourant, P.; Baeten, V.; Morales, M.T.; Meurens, M.; Aparicio, R. Oil and fat classification by selected bands of near-iInfrared spectroscopy. Appl. Spectrosc. 2000, 54, 1168–1174. [Google Scholar] [CrossRef]
- Aenugu, H.P.R.; Kumar, D.S.; Srisudharson, N.P.; Ghosh, S.S.; Banji, D. Near infrared spectroscopy—An overview. Int. J. ChemTech. Res. 2011, 3, 825–836. [Google Scholar]
- Basavarajappa, B.S.; Shetty, H.S.; Prakash, H.S. Membrane deterioration and other biochemical-changes, associated with accelerated aging of maize seeds. Seed Sci. Technol. 1991, 19, 279–286. [Google Scholar]
- Lohumi, S.; Lee, S.; Cho, B.K. Optimal variable selection for Fourier transform infrared spectroscopy analysis of starch-adulterated garlic powder. Sens. Actuators B Chem. 2015, 216, 622–628. [Google Scholar] [CrossRef]
a LVs | b PC | c PV | ||||||
---|---|---|---|---|---|---|---|---|
Viable | Nonviable | Total | Viable | Nonviable | Total | |||
Embryo | Raw | 10 | 75/75 | 75/75 | 100% | 24/25 | 24/25 | 96.0% |
Normalization | 10 | 75/75 | 75/75 | 100% | 24/25 | 24/25 | 96.0% | |
MSC (mean) | 9 | 75/75 | 75/75 | 100% | 25/25 | 24/25 | 98.0% | |
S-G 1st | 5 | 72/75 | 75/75 | 98.0% | 24/25 | 22/25 | 92.0% | |
S-G 2nd | 6 | 75/75 | 75/75 | 100% | 25/25 | 23/25 | 96.0% | |
Endosperm | Raw | 10 | 75/75 | 73/75 | 98.7% | 24/25 | 25/25 | 98.0% |
Normalization | 10 | 75/75 | 74/75 | 99.3% | 24/25 | 25/25 | 98.0% | |
MSC (mean) | 9 | 75/75 | 74/75 | 99.3% | 24/25 | 25/25 | 98.0% | |
S-G 1st | 4 | 74/75 | 75/75 | 99.3% | 25/25 | 24/25 | 98.0% | |
S-G 2nd | 4 | 75/75 | 74/75 | 99.3% | 24/25 | 24/25 | 96.0% |
LVs | PC | PV | ||||||
---|---|---|---|---|---|---|---|---|
Viable | Nonviable | Total | Viable | Nonviable | Total | |||
Embryo | Raw | 7 | 73/75 | 73/75 | 97.3% | 24/25 | 24/25 | 96.0% |
Normalization | 7 | 74/75 | 73/75 | 98.0% | 24/25 | 24/25 | 96.0% | |
MSC (mean) | 6 | 75/75 | 74/75 | 99.3% | 24/25 | 24/25 | 96.0% | |
S-G 1st | 4 | 75/75 | 75/75 | 100% | 25/25 | 24/25 | 98.0% | |
S-G 2nd | 3 | 74/75 | 73/75 | 98.0% | 25/25 | 24/25 | 98.0% | |
Endosperm | Raw | 8 | 74/75 | 74/75 | 98.7% | 25/25 | 22/25 | 94.0% |
Normalization | 8 | 74/75 | 73/75 | 98.0% | 25/25 | 22/25 | 94.0% | |
MSC (mean) | 7 | 74/75 | 73/75 | 98.0% | 24/25 | 22/25 | 92.0% | |
S-G 1st | 6 | 74/75 | 75/75 | 99.3% | 25/25 | 22/25 | 94.0% | |
S-G 2nd | 5 | 75/75 | 74/75 | 99.3% | 24/25 | 21/25 | 90.0% |
LVs | PC | PV | ||||||
---|---|---|---|---|---|---|---|---|
Viable | Nonviable | Total | Viable | Nonviable | Total | |||
Embryo | Raw | 18 | 73/75 | 150/150 | 99.1% | 23/25 | 47/50 | 93.3% |
Normalization | 18 | 72/75 | 150/150 | 98.7% | 23/25 | 47/50 | 93.3% | |
MSC (mean) | 17 | 72/75 | 150/150 | 98.7% | 23/25 | 47/50 | 93.3% | |
S-G 1st | 11 | 75/75 | 149/150 | 99.6% | 25/25 | 49/50 | 98.7% | |
S-G 2nd | 9 | 74/75 | 147/150 | 98.2% | 24/25 | 47/50 | 94.7% | |
Endosperm | Raw | 13 | 74/75 | 147/150 | 98.2% | 24/25 | 49/50 | 97.3% |
Normalization | 13 | 74/75 | 146/150 | 97.8% | 24/25 | 49/50 | 97.3% | |
MSC (mean) | 12 | 74/75 | 147/150 | 98.2% | 24/25 | 48/50 | 96.0% | |
S-G 1st | 9 | 74/75 | 148/150 | 98.7% | 25/25 | 49/50 | 98.7% | |
S-G 2nd | 9 | 75/75 | 148/150 | 99.1% | 22/25 | 46/50 | 90.7% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, G.; Lü, E.; Lu, H.; Xu, S.; Zeng, F.; Shui, Q. Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis. Sensors 2018, 18, 1010. https://doi.org/10.3390/s18041010
Qiu G, Lü E, Lu H, Xu S, Zeng F, Shui Q. Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis. Sensors. 2018; 18(4):1010. https://doi.org/10.3390/s18041010
Chicago/Turabian StyleQiu, Guangjun, Enli Lü, Huazhong Lu, Sai Xu, Fanguo Zeng, and Qin Shui. 2018. "Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis" Sensors 18, no. 4: 1010. https://doi.org/10.3390/s18041010
APA StyleQiu, G., Lü, E., Lu, H., Xu, S., Zeng, F., & Shui, Q. (2018). Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis. Sensors, 18(4), 1010. https://doi.org/10.3390/s18041010