Power Consumption and Calculation Requirement Analysis of AES for WSN IoT
Abstract
:1. Introduction
2. Advanced Encryption Standard Details
2.1. Advanced Encryption Standard (AES)
2.2. Electronic Codebook Mode (ECB)
2.3. Counter with CBC-MAC Mode (CCM)
3. Implementation Method
3.1. Implementation Platform and Experimental Details
3.2. Flow of Different Encryption Types
3.2.1. Non-AES
3.2.2. AES-ECB-SW
3.2.3. AES-ECB-HW
3.2.4. AES-CCM-HW
3.3. Analysis of Extra Waste Rate in Different Encryption Types
4. Experimental Results and Analysis
4.1. Encryption Power Consumption of Different Encryption Types
4.2. Transmission Power Consumption of Different Encryption Types
4.3. Analysis of the Total Power Consumption of Different Encryption Types
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Navarro-Ortiz, J.; Sendra, S.; Ameigeiras, P.; Lopez-Soler, J.M. Integration of LoRaWAN and 4G/5G for the Industrial Internet of Things. IEEE Commun. Mag. 2018, 56, 60–67. [Google Scholar] [CrossRef]
- Kambourakis, G.; Kolias, C.; Stavrou, A. The Mirai botnet and the IoT Zombie Armies. In Proceedings of the MILCOM 2017—2017 IEEE Military Communications Conference, Baltimore, MD, USA, 23–25 October 2017; pp. 267–272. [Google Scholar]
- Angrishi, K. Turning Internet of Things (IoT) into Internet of Vulnerabilities (IoV): IoT Botnets. arXiv, 2017; arXiv:1702.03681. [Google Scholar]
- Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. IEEE J. Mag. 2017, 50, 80–84. [Google Scholar] [CrossRef]
- National Institute and Standards of Technology. Specification for the Advanced Encryption Standard (AES); Federal Information Processing Standards Publication 197: Gaithersburg, U.S., 2001. Available online: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf (accessed on 23 May 2018).
- Bui, D.H.; Puschini, D.; Bacles-Min, S.; Beigné, E.; Tran, X.T. Ultra low-power and low-energy 32-bit datapath AES architecture for IoT applications. In Proceedings of the 2016 International Conference on IC Design and Technology, Ho Chi Minh City, Vietnam, 27–29 June 2016; pp. 1–4. [Google Scholar]
- Yu, W.; Köse, S. A Lightweight Masked AES Implementation for Securing IoT Against CPA Attacks. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2934–2944. [Google Scholar] [CrossRef]
- Zeng, B.; Wang, X.; Zhou, K.; Zhao, X. Encryption Node Design in Internet of Things Based on Fingerprint Features and CC2530. In Proceedings of the IEEE Conferences, Beijing, China, 20–23 August 2013; pp. 1454–1457. [Google Scholar]
- Agwa, S.; Yahya, E.; Ismail, Y. Power efficient AES core for IoT constrained devices implemented in 130 nm CMOS. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems, Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
- Lu, S.; Zhang, Z.; Papaefthymiou, M. A 1.25pJ/bit 0.048mm2 AES core with DPA resistance for IoT devices. In Proceedings of the 2017 IEEE Asian Solid-State Circuits Conference, Seoul, Korea, 5–8 November 2017; pp. 65–68. [Google Scholar]
- Dao, V.L.; Nguyen, A.T.; Hoang, V.P.; Tran, T.A. An ASIC implementation of low area AES encryption core for wireless networks. In Proceedings of the 2015 International Conference on Communications, Management and Telecommunications (ComManTel), DaNang, Vietnam, 28–30 December 2015; pp. 99–102. [Google Scholar]
- Matsuoka, S.; Ichikawa, S. Reduction of Power Consumption in Key-specific AES Circuits. In Proceedings of the 2012 Third International Conference on Networking and Computing, Okinawa, Japan, 5–7 December 2012; pp. 323–325. [Google Scholar]
- Hoang, V.P.; Dao, V.L.; Pham, C.K. Design of ultra-low power AES encryption cores with silicon demonstration in SOTB CMOS process. IEEE Electron. Lett. 2017, 53, 1512–1514. [Google Scholar] [CrossRef]
- Pammu, A.A.; Chong, K.S.; Ne, K.Z.L.; Gwee, B.H. High Secured Low Power Multiplexer-LUT Based AES S-Box Implementation. In Proceedings of the 2016 International Conference on Information Systems Engineering (ICISE), Los Angeles, CA, USA, 20–22 April 2016; pp. 3–7. [Google Scholar]
- Altolini, D.; Lakkundi, V.; Bui, N.; Tapparello, C.; Rossi, M. Low power link layer security for IoT: Implementation and performance analysis. In Proceedings of the 2013 9th International Wireless Communications and Mobile Computing Conference, Sardinia, Italy, 1–5 July 2013; pp. 919–925. [Google Scholar]
- Diehl, W.; Farahmand, F.; Yalla, P.; Kaps, J.P.; Gaj, K. Comparison of hardware and software implementations of selected lightweight block ciphers. In Proceedings of the 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 4–8 September 2017; pp. 1–4. [Google Scholar]
- FIPS Publication 197. Advanced Encryption Standard (AES); U.S. DoC/NIST (https://www.nist.gov/): Boulder, CO, USA, 2001. Available online: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf (accessed on 3 February 2018).
- NIST Special Publication 800-38A. Recommendation for Block Cipher Modes of Operation; U.S. DoC/NIST (https://www.nist.gov/): Boulder, CO, USA, 2001. Available online: https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38a.pdf (accessed on 3 February 2018).
- Daemen, J.; Rijmen, V. The Design of Rijndael: AES-the Advanced Encryption Standard; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- IEEE 802.15.4. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs). Available online: http://www.ieee802.org/15/pub/TG4.html (accessed on 22 May 2018).
- Texas Instruments. CC13x0, CC26x0 SimpleLink™ Wireless MCU Technical Reference Manual (Rev. H). Available online: http://www.ti.com/lit/ug/swcu117h/swcu117h.pdf (accessed on 22 May 2018).
Security Attributes | Authentication Tag Length (Bytes) | Security Level |
---|---|---|
Encryption (ENC) | 0 | 4 |
ENC-MIC-32 | 4 | 5 |
ENC-MIC-64 | 8 | 6 |
ENC-MIC-128 | 16 | 7 |
Plaintext Length (Bytes) | Encryption Type | |||
---|---|---|---|---|
AES-ECB-SW | AES-ECB-HW | AES-CCM-HW-MIC64 | AES-CCM-HW-MIC128 | |
5 bytes | 366.27 μs | 30.29 μs | 30.49 μs | 31.17 μs |
20 bytes | 732.51 μs | 60.19 μs | 31.53 μs | 32.09 μs |
50 bytes | 1464.77 μs | 120.66 μs | 60.84 μs | 62.09 μs |
100 bytes | 2533.01 μs | 152.53 μs | 61.61 μs | 120.34 μs |
Encryption Type | Current Consumption |
---|---|
Non-AES | 3.6273 mA |
AES-ECB-SW | 3.6275 mA |
AES-ECB-HW | 4.7696 mA |
AES-CCM-HW-MIC64 | 4.7684 mA |
AES-CCM-HW-MIC128 | 4.7686 mA |
Plaintext Length (Bytes) | Encryption Type | ||||
---|---|---|---|---|---|
Non-AES | AES-ECB-SW | AES-ECB-HW | AES-CCM-HW-MIC64 | AES-CCM-HW-MIC128 | |
5 | 758 μs | 1203 μs | 1196 μs | 1081 μs | 1402 μs |
20 | 1357 μs | 1847 μs | 1840 μs | 1679 μs | 2482 μs |
50 | 2561 μs | 3119 μs | 3118 μs | 2880 μs | 3201 μs |
100 | 4567 μs | 5681 μs | 5678 μs | 4881 μs | 5219 μs |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, C.-W.; Hsu, W.-T. Power Consumption and Calculation Requirement Analysis of AES for WSN IoT. Sensors 2018, 18, 1675. https://doi.org/10.3390/s18061675
Hung C-W, Hsu W-T. Power Consumption and Calculation Requirement Analysis of AES for WSN IoT. Sensors. 2018; 18(6):1675. https://doi.org/10.3390/s18061675
Chicago/Turabian StyleHung, Chung-Wen, and Wen-Ting Hsu. 2018. "Power Consumption and Calculation Requirement Analysis of AES for WSN IoT" Sensors 18, no. 6: 1675. https://doi.org/10.3390/s18061675
APA StyleHung, C. -W., & Hsu, W. -T. (2018). Power Consumption and Calculation Requirement Analysis of AES for WSN IoT. Sensors, 18(6), 1675. https://doi.org/10.3390/s18061675