Brillouin Dynamic Gratings—A Practical Form of Brillouin Enhanced Four Wave Mixing in Waveguides: The First Decade and Beyond
Abstract
:1. Introduction
2. Principle of Operation
3. Available Platforms
4. Materials Choice and Geometry Considerations
5. BDG Generation and Interrogation Techniques
5.1. Acoustic Build-Up Localization Methods
5.2. Grating Readout Methods
6. BDG Applications
6.1. All-Optical Signal Processing
6.2. Reflectometers and Sensors
7. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scott, A.M.; Ridley, K.D. A review of Brillouin-enhanced four-wave mixing. IEEE J. Quantum Electron. 1989, 25, 438–459. [Google Scholar] [CrossRef]
- Zhou, D.P.; Dong, Y.; Chen, L.; Bao, X. Four-wave mixing analysis of Brillouin dynamic grating in a polarization-maintaining fiber: Theory and experiment. Opt. Express 2011, 19, 20785–20798. [Google Scholar] [CrossRef] [PubMed]
- Chiao, R.Y.; Townes, C.H.; Stoicheff, B.P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 1964, 12, 592–595. [Google Scholar] [CrossRef]
- Basov, N.G.; Efimkov, V.F.; Zubarev, I.G.; Kotov, A.V. Inversion of wavefront in SMBS of a depolarized pump. JETP Lett. 1978, 28, 197–201. [Google Scholar]
- Valley, M.; Lombardi, G.; Aprahamian, R. Beam combination by stimulated Brillouin scattering. JOSA B 1986, 3, 1492–1497. [Google Scholar] [CrossRef]
- Bowers, M.W.; Boyd, R.W. Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation. IEEE J. Quantum Electron. 1998, 34, 634–644. [Google Scholar] [CrossRef]
- Bayvel, P.; Giles, I.P. Observation of Brillouin enhanced four wave mixing in an all-fibre ring resonator. Opt. Commun. 1990, 75, 57–62. [Google Scholar] [CrossRef]
- Song, K.Y.; Zou, W.; He, Z.; Hotate, K. All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Opt. Lett. 2008, 33, 926–928. [Google Scholar] [CrossRef] [PubMed]
- Santagiustina, M.; Chin, S.; Primerov, N.; Ursini, L.; Thévenaz, L. All-optical signal processing using dynamic Brillouin gratings. Sci. Rep. 2013, 3, 1594. [Google Scholar] [CrossRef] [PubMed]
- Sancho, J.; Primerov, N.; Chin, S.; Antman, Y.; Zadok, A.; Sales, S.; Thévenaz, L. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers. Opt. Express 2012, 20, 6157–6162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, S.; Thévenaz, L. Tunable photonic delay lines in optical fibers. Laser Photonics Rev. 2012, 6, 724–738. [Google Scholar] [CrossRef] [Green Version]
- Antman, Y.; Yaron, L.; Langer, T.; Tur, M.; Levanon, N.; Zadok, A. Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes. Opt. Lett. 2013, 38, 4701–4704. [Google Scholar] [CrossRef] [PubMed]
- Kalosha, V.P.; Li, W.; Wang, F.; Chen, L.; Bao, X. Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers. Opt. Lett. 2008, 33, 2848–2850. [Google Scholar] [CrossRef] [PubMed]
- Winful, H.G. Chirped Brillouin dynamic gratings for storing and compressing light. Opt. Express 2013, 21, 10039–10047. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Li, M.; Deng, Y.; Huang, N.; Liu, J.; Zhu, N. Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings. Opt. Express 2014, 22, 4290–4300. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Jiang, T.; Teng, L.; Zhang, H.; Chen, L.; Bao, X.; Lu, Z. Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings. Opt. Lett. 2014, 39, 2967–2970. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chen, L.; Bao, X. Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating. Opt. Lett. 2010, 35, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Hu, Q.; Chen, X.; Kim, B.Y.; Shieh, W. Characterization of distributed modal birefringence in a few-mode fiber based on Brillouin dynamic grating. Opt. Lett. 2014, 39, 3153–3156. [Google Scholar] [CrossRef] [PubMed]
- Song, K.Y.; Chin, S.; Primerov, N.; Thévenaz, L. Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating. J. Lightwave Technol. 2010, 28, 2062–2067. [Google Scholar] [CrossRef]
- Chin, S.; Primerov, N.; Thévenaz, L. Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers. IEEE Sens. J. 2012, 12, 189–194. [Google Scholar] [CrossRef]
- Dong, Y.; Teng, L.; Tong, P.; Jiang, T.; Zhang, H.; Zhu, T.; Chen, L.; Bao, X.; Lu, Z. High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings. Opt. Lett. 2015, 40, 5003–5006. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Zhang, H.; Dong, Y.; Zhou, D.; Jiang, T.; Gao, W.; Lu, Z.; Chen, L.; Bao, X. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings. Opt. Lett. 2016, 41, 4413–4416. [Google Scholar] [CrossRef] [PubMed]
- Bergman, A.; Langer, T.; Tur, M. Coding-enhanced ultrafast and distributed Brillouin dynamic gratings sensing using coherent detection. J. Lightwave Technol. 2016, 34, 5593–5600. [Google Scholar] [CrossRef]
- Bergman, A.; Langer, T.; Tur, M. Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers. Opt. Express 2017, 25, 5376–5388. [Google Scholar] [CrossRef] [PubMed]
- Kittlaus, E.A.; Otterstrom, N.T.; Rakich, P.T. On-chip inter-modal Brillouin scattering. Nat. Commun. 2017, 8, 15819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Song, K.Y. Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating. Opt. Express 2014, 22, 17292–17302. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; He, Z.; Song, K.Y.; Hotate, K. Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber. Opt. Lett. 2009, 34, 1126–1128. [Google Scholar] [CrossRef] [PubMed]
- Santagiustina, M.; Ursini, L. Dynamic Brillouin gratings permanently sustained by chaotic lasers. Opt. Lett. 2012, 37, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Antman, Y.; Primerov, N.; Sancho, J.; Thévenaz, L.; Zadok, A. Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps. Opt. Express 2012, 20, 7807–7821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, P.S.J.; Culverhouse, D.; Farahi, F. Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers. IEEE J. Quantum Electron. 1991, 27, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic: Cambridge, MA, USA, 2008. [Google Scholar]
- Song, K.Y.; Yoon, H.J. Observation of narrowband intrinsic spectra of Brillouin dynamic gratings. Opt. Lett. 2010, 35, 2958–2960. [Google Scholar] [CrossRef] [PubMed]
- Bergman, A.; Yaron, L.; Langer, T.; Tur, M. Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings. J. Lightwave Technol. 2015, 33, 2611–2616. [Google Scholar] [CrossRef]
- Kobyakov, A.; Sauer, M.; Chowdhury, D. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photonics 2010, 2, 1–59. [Google Scholar] [CrossRef]
- Agrawal, G. Nonlinear Fiber Optics, 3rd ed.; Academic: San Diego, CA, USA, 2001. [Google Scholar]
- Rakich, P.T.; Reinke, C.; Camacho, R.; Davids, P.; Wang, Z. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X 2012, 2, 011008. [Google Scholar] [CrossRef]
- Feng, X.; Mairaj, A.K.; Hewak, D.W.; Monro, T.M. Nonsilica glasses for holey fibers. J. Lightwave Technol. 2005, 23, 2046–2054. [Google Scholar] [CrossRef] [Green Version]
- Song, K.Y. Operation of Brillouin dynamic grating in single-mode optical fibers. Opt. Lett. 2011, 36, 4686–4688. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Yasuno, T.; Satoh, S.I. Beat Noise Reduction by Fast Optical Switching in Brillouin Grating-Based FMCW Reflectometry. IEEE Photonics Technol. Lett. 2017, 29, 1078–1081. [Google Scholar] [CrossRef]
- Takada, K.; Satoh, S.I. Beat noise reduction utilizing the transient acoustic-wave response of an optical fiber in Brillouin grating-based optical low coherence reflectometry. Appl. Opt. 2018, 57, 5235–5241. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Chen, J. All-optical generation of Brillouin dynamic grating based on multiple acoustic modes in a single-mode dispersion-shifted fiber. Opt. Express 2013, 21, 14771–14779. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, M.J.; Vodhanel, R.S. All-optical Brillouin dynamic grating generation in few-mode optical fiber. Opt. Lett. 2012, 37, 4660–4662. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.; Steel, M.J.; Poulton, C.G. Formal selection rules for Brillouin scattering in integrated waveguides and structured fibers. Opt. Express 2014, 22, 32489–32501. [Google Scholar] [CrossRef] [PubMed]
- Russell, P. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Dainese, P.; Russell, P.S.J.; Joly, N.; Knight, J.C.; Wiederhecker, G.S.; Fragnito, H.L.; Laude, V.; Khelif, A. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat. Phys. 2006, 2, 388–392. [Google Scholar] [CrossRef]
- Pant, R.; Li, E.; Poulton, C.G.; Choi, D.Y.; Madden, S.; Luther-Davies, B.; Eggleton, B.J. Observation of Brillouin dynamic grating in a photonic chip. Opt. Lett. 2013, 38, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Eggleton, B.J.; Poulton, C.G.; Pant, R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photonics 2013, 5, 536–587. [Google Scholar] [CrossRef]
- Kittlaus, E.A.; Shin, H.; Rakich, P.T. Large Brillouin amplification in silicon. Nat. Photonics 2016, 10, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Van Laer, R.; Kuyken, B.; Van Thourhout, D.; Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photonics 2015, 9, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Kittlaus, E.A.; Otterstrom, N.T.; Kharel, P.; Gertler, S.; Rakich, P.T. Nonreciprocal Modulation via Intermodal Brillouin Scattering in a Silicon Waveguide. In Proceedings of the CLEO: Science and Innovations, SM1I-8, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Ballato, J.; Dragic, P. Materials development for next generation optical fiber. Materials 2014, 7, 4411–4430. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Krauss, T.D.; Wise, F.W.; Aitken, B.G.; Borrelli, N.F. Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses. JOSA B 1995, 12, 2053–2059. [Google Scholar] [CrossRef]
- Heiman, D.; Hamilton, D.S.; Hellwarth, R.W. Brillouin scattering measurements on optical glasses. Phys. Rev. B 1979, 19, 6583. [Google Scholar] [CrossRef]
- Hall, D.W.; Newhouse, M.A.; Borrelli, N.F.; Dumbaugh, W.H.; Weidman, D.L. Nonlinear optical susceptibilities of high-index glasses. Appl. Phys. Lett. 1989, 54, 1293–1295. [Google Scholar] [CrossRef]
- Petropoulos, P.; Ebendorff-Heidepriem, H.; Finazzi, V.; Moore, R.C.; Frampton, K.; Richardson, D.J.; Monro, T.M. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt. Express 2003, 11, 3568–3573. [Google Scholar] [CrossRef] [PubMed]
- Ebendorff-Heidepriem, H.; Petropoulos, P.; Asimakis, S.; Finazzi, V.; Moore, R.C.; Frampton, K.; Koizumi, F.; Richardson, D.J.; Monro, T.M. Bismuth glass holey fibers with high nonlinearity. Opt. Express 2004, 12, 5082–5087. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Nagashima, T.; Sugimoto, N. Z-scan study of third-order optical nonlinearities in bismuth-based glasses. Opt. Commun. 2005, 250, 411–415. [Google Scholar] [CrossRef]
- Gomes, A.S.L.; Falcão Filho, E.L.; de Araújo, C.B.; Rativa, D.; De Araujo, R.E.; Sakaguchi, K.; Mezzapesa, F.P.; Carvalho, I.C.; Kazansky, P.G. Third-order nonlinear optical properties of bismuth-borate glasses measured by conventional and thermally managed eclipse Z scan. J. Appl. Phys. 2007, 101, 033115. [Google Scholar] [CrossRef] [Green Version]
- Jaauregui, C.; Ono, H.; Petropoulos, P.; Richardson, D.J. Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 5–10 March 2006; pp. 1–3. [Google Scholar]
- Lee, J.H.; Tanemura, T.; Kikuchi, K.; Nagashima, T.; Hasegawa, T.; Ohara, S.; Sugimoto, N. Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers. Opt. Lett. 2005, 30, 1698–1700. [Google Scholar] [CrossRef] [PubMed]
- Nasu, H.; Ito, T.; Hase, H.; Matsuoka, J.; Kamiya, K. Third-order optical non-linearity of Bi2O3-based glasses. J. Non-Cryst. Solids 1996, 204, 78–82. [Google Scholar] [CrossRef]
- Abedin, K.S. Stimulated Brillouin scattering in single-mode tellurite glass fiber. Opt. Express 2006, 14, 11766–11772. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Nie, Q.; Xu, T.; Dai, S.; Wang, X.; Shen, X. A study of nonlinear optical properties in Bi2O3–WO3–TeO2 glasses. J. Non-Cryst. Solids 2008, 354, 3468–3472. [Google Scholar] [CrossRef]
- Eggleton, B.J.; Luther-Davies, B.; Richardson, K. Chalcogenide photonics. Nat. Photonics 2011, 5, 141–148. [Google Scholar] [CrossRef]
- Vogel, W.; Lense, E. Chemistry of Glass; American Ceramic Society: Westerville, OH, USA, 1985. [Google Scholar]
- Kanamori, T.; Terunuma, Y.; Takahashi, S.; Miyashita, T. Chalcogenide glass fibers for mid-infrared transmission. J. Lightwave Technol. 1984, 2, 607–613. [Google Scholar] [CrossRef]
- Choudhary, A.; Morrison, B.; Aryanfar, I.; Shahnia, S.; Pagani, M.; Liu, Y.; Vu, K.; Madden, S.; Marpaung, D.; Eggleton, B.J. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J. Lightwave Technol. 2017, 35, 846–854. [Google Scholar] [CrossRef]
- Levy, S.; Lyubin, V.; Klebanov, M.; Scheuer, J.; Zadok, A. Stimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides. Opt. Lett. 2012, 37, 5112–5114. [Google Scholar] [CrossRef] [PubMed]
- Katzman, M.; Munk, D.; Hen, M.; Bergman, A.; Oksman, M.; Kaganovskii, Y.; Rosenbluh, M.; Zadok, A. Four-Wave Mixing in Highly Nonlinear Chalcogenide Glass-in-Silica Waveguides. In Proceedings of the CLEO: Applications and Technology, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Horst, F.; Green, W.M.; Assefa, S.; Shank, S.M.; Vlasov, Y.A.; Offrein, B.J. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing. Opt. Express 2013, 21, 11652–11658. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.W.; Wiederhecker, G.S.; Cardenas, J.; Poitras, C.; Lipson, M. High quality factor etchless silicon photonic ring resonators. Opt. Express 2011, 19, 6284–6289. [Google Scholar] [CrossRef] [PubMed]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nat. Photonics 2010, 4, 535–544. [Google Scholar] [CrossRef]
- Esembeson, B.; Scimeca, M.L.; Michinobu, T.; Diederich, F.; Biaggio, I. A High-Optical Quality Supramolecular Assembly for Third-Order Integrated Nonlinear Optics. Adv. Mater. 2008, 20, 4584–4587. [Google Scholar] [CrossRef]
- Morrison, B.; Casas-Bedoya, A.; Ren, G.; Vu, K.; Liu, Y.; Zarifi, A.; Nguyen, T.G.; Choi, D.Y.; Marpaung, D.; Madden, S.J.; et al. Compact Brillouin devices through hybrid integration on silicon. Optica 2017, 4, 847–854. [Google Scholar] [CrossRef]
- Koos, C.; Jacome, L.; Poulton, C.; Leuthold, J.; Freude, W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 2007, 15, 5976–5990. [Google Scholar] [CrossRef] [PubMed]
- Soljačić, M.; Joannopoulos, J.D. Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 2004, 3, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Merklein, M.; Kabakova, I.V.; Büttner, T.F.; Choi, D.Y.; Luther-Davies, B.; Madden, S.J.; Eggleton, B.J. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nat. Commun. 2015, 6, 6396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, C.; Steel, M.J.; Eggleton, B.J.; Poulton, C.G. Stimulated Brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis. Phys. Rev. A 2015, 92, 013836. [Google Scholar] [CrossRef]
- Dong, Y.; Bao, X.; Chen, L. Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber. Opt. Lett. 2009, 34, 2590–2592. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Gauthier, D.J.; Boyd, R.W. Stored light in an optical fiber via stimulated Brillouin scattering. Science 2007, 318, 1748–1750. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.; Primerov, N.; Thévenaz, L. Photonic delay line for broadband optical signals, based on dynamic grating reflectors in fibers. In Proceedings of the European Conference and Exhibition on Optical Communication, Torino, Italy, 19–23 September 2010; pp. 1–3. [Google Scholar]
- Thévenaz, L. Advanced Fiber Optics—Concepts and Technology; EPFL Press: Lausanne, Switzerland, 2011. [Google Scholar]
- Hotate, K.; Hasegawa, T. Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique—Proposal, Experiment and Simulation. IEICE Trans. Electron. 2000, 83, 405–412. [Google Scholar]
- Motil, A.; Bergman, A.; Tur, M. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2016, 78, 81–103. [Google Scholar] [CrossRef]
- Yamashita, R.K.; He, Z.; Hotate, K. Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating. IEEE Photonics Technol. Lett. 2014, 26, 473–476. [Google Scholar] [CrossRef]
- Hotate, K.; Arai, H.; Song, K.Y. Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme. SICE J. Control Meas. Syst. Integr. 2008, 1, 271–274. [Google Scholar] [CrossRef]
- Antman, Y.; Levanon, N.; Zadok, A. Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves. Opt. Lett. 2012, 37, 5259–5261. [Google Scholar] [CrossRef] [PubMed]
- Porat, B. Digital Signal Processing of Random Signals; Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Cohen, R.; London, Y.; Antman, Y.; Zadok, A. Brillouin optical correlation domain analysis with 4 mm resolution based on amplified spontaneous emission. Opt. Express 2014, 22, 12070–12078. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.P.; Yousefi, M.; Lenstra, D.; Carter, M.W.; Vemuri, G. Filtered optical feedback induced frequency dynamics in semiconductor lasers. Phys. Rev. Lett. 2004, 92, 023901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Z.; Wu, Y.; Zhang, M.; Liu, Y.; Li, M. Optimized chaotic Brillouin dynamic grating with filtered optical feedback. Sci. Rep. 2018, 8, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaron, L.; Peled, Y.; Langer, T.; Tur, M. Enhanced spontaneous backscattering in Brillouin dynamic gratings. Opt. Lett. 2013, 38, 5138–5141. [Google Scholar] [CrossRef] [PubMed]
- Yaron, L.; Shahmoon, E.; Bergman, A.; Langer, T.; Tur, M. Spontaneous anti-Stokes backscattering in Brillouin dynamic gratings. In Proceedings of the 24th International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September–2 October 2015. [Google Scholar]
- Bergman, A.; Langer, T.; Tur, M. High spatial resolution, low-noise Brillouin dynamic gratings reflectometry based on digital pulse compression. Opt. Lett. 2016, 41, 3643–3646. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.A.; Denisov, A.; Angulo-Vinuesa, X.; Martin-Lopez, S.; Thévenaz, L.; Gonzalez-Herraez, M. Highly-sensitive distributed birefringence measurements based on a two-pulse interrogation of a dynamic Brillouin grating. In Proceedings of the 25th International Conference on Optical Fibre Sensors, Jeju, Korea, 24–28 April 2017. [Google Scholar]
- Levanon, N.; Mozeson, E. Radar Signals; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Zou, W.; Chen, J. Spectral analysis of Brillouin dynamic grating based on heterodyne detection. Appl. Phys. Express 2013, 6, 122503. [Google Scholar] [CrossRef]
- Sengupta, D.; Santagiustina, M.; Chiarello, F.; Palmieri, L. Generation of dynamic Brillouin grating in polarization maintaining fiber. In Proceedings of the Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V, San Diego, CA, USA, 5 September 2014. [Google Scholar]
- Chiarello, F.; Sengupta, D.; Palmieri, L.; Santagiustina, M. Distributed characterization of localized and stationary dynamic Brillouin gratings in polarization maintaining optical fibers. Opt. Express 2016, 24, 5866–5875. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Yasuno, T. Coherent frequency-modulated continuous wave reflectometry for measuring stationary Brillouin grating induced under uniform pumping by counterpropagating nonmodulated light waves. Appl. Opt. 2016, 55, 3993–4000. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Yasuno, T. Ultra-high spatial resolution Brillouin grating measurement using OLCR. Electron. Lett. 2017, 53, 423–424. [Google Scholar] [CrossRef]
- Willner, A.E.; Khaleghi, S.; Chitgarha, M.R.; Yilmaz, O.F. All-optical signal processing. J. Lightwave Technol. 2014, 32, 660–680. [Google Scholar] [CrossRef]
- Azana, J. Ultrafast analog all-optical signal processors based on fiber-grating devices. IEEE Photonics J. 2010, 2, 359–386. [Google Scholar] [CrossRef]
- Dong, Y.; Zhou, D.; Teng, L.; Xu, P.; Jiang, T.; Zhang, H.; Lu, Z.; Chen, L.; Bao, X. Phase-shifted Brillouin dynamic gratings using single pump phase-modulation: Proof of concept. Opt. Express 2016, 24, 11218–11231. [Google Scholar] [CrossRef] [PubMed]
- Song, K.Y.; Hotate, K.; Zou, W.; He, Z. Applications of brillouin dynamic grating to distributed fiber sensors. J. Lightwave Technol. 2017, 35, 3268–3280. [Google Scholar] [CrossRef]
- Nikles, M.; Thevenaz, L.; Robert, P.A. Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightwave Technol. 1997, 15, 1842–1851. [Google Scholar] [CrossRef] [Green Version]
- Horiguchi, T.; Kurashima, T.; Tateda, M. A technique to measure distributed strain in optical fibers. IEEE Photonics Technol. Lett. 1990, 2, 352–354. [Google Scholar] [CrossRef]
- Zou, W.; He, Z.; Hotate, K. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Opt. Express 2009, 17, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Bergman, A.; Langer, T.; Tur, M. Slope-assisted complementary-correlation optical time-domain analysis of Brillouin dynamic gratings for high sensitivity, high spatial resolution, fast and distributed fiber strain sensing. In Proceedings of the Fifth Asia-Pacific Optical Sensors Conference, Jeju, Korea, 20–22 May 2015. [Google Scholar]
- Thévenaz, L. Silicon nanophotonics: Good vibrations for light. Nat. Photonics 2015, 9, 144–146. [Google Scholar] [CrossRef]
- Peled, Y.; Motil, A.; Kressel, I.; Tur, M. Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA. Opt. Express 2013, 21, 10697–10705. [Google Scholar] [CrossRef] [PubMed]
- Minardo, A.; Coscetta, A.; Bernini, R.; Ruiz-Lombera, R.; Serrano, J.M.; Lopez-Higuera, J.M.; Zeni, L. Structural damage identification in an aluminum composite plate by Brillouin sensing. IEEE Sens. J. 2015, 15, 659–660. [Google Scholar] [CrossRef]
- Wild, G.; Hinckley, S. Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art. IEEE Sens. J. 2008, 8, 1184–1193. [Google Scholar] [CrossRef]
- Bergman, A.; Langer, T.; Tur, M. Towards a Distributed Acousto-Ultrasonic Optical Fiber Sensor Using Brillouin Dynamic Gratings. In Proceedings of the Optical Engineering Conference, Jerusalem, Israel, 3 February 2016. [Google Scholar]
- Habel, W.R.; Schukar, V.G.; Kusche, N. Fibre-optic strain sensors are making the leap from lab to industrial use—Reliability and validation as a precondition for standards. Meas. Sci. Technol. 2013, 24, 094006. [Google Scholar] [CrossRef]
- Mateo, E.; Yaman, F.; Li, G. Control of four-wave mixing phase-matching condition using the Brillouin slow-light effect in fibers. Opt. Lett. 2008, 33, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shu, C. Dynamic control of phase matching in four-wave mixing wavelength conversion of amplitude-and phase-modulated signals. J. Lightwave Technol. 2013, 31, 1468–1474. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergman, A.; Tur, M. Brillouin Dynamic Gratings—A Practical Form of Brillouin Enhanced Four Wave Mixing in Waveguides: The First Decade and Beyond. Sensors 2018, 18, 2863. https://doi.org/10.3390/s18092863
Bergman A, Tur M. Brillouin Dynamic Gratings—A Practical Form of Brillouin Enhanced Four Wave Mixing in Waveguides: The First Decade and Beyond. Sensors. 2018; 18(9):2863. https://doi.org/10.3390/s18092863
Chicago/Turabian StyleBergman, Arik, and Moshe Tur. 2018. "Brillouin Dynamic Gratings—A Practical Form of Brillouin Enhanced Four Wave Mixing in Waveguides: The First Decade and Beyond" Sensors 18, no. 9: 2863. https://doi.org/10.3390/s18092863
APA StyleBergman, A., & Tur, M. (2018). Brillouin Dynamic Gratings—A Practical Form of Brillouin Enhanced Four Wave Mixing in Waveguides: The First Decade and Beyond. Sensors, 18(9), 2863. https://doi.org/10.3390/s18092863