A Switched-Element System Based Direction of Arrival (DOA) Estimation Method for Un-Cooperative Wideband Orthogonal Frequency Division Multi Linear Frequency Modulation (OFDM-LFM) Radar Signals
Abstract
:1. Introduction
2. Problem Formulations
3. Proposed Method
3.1. Estimation of Spatial Chirp Rate
3.2. Estimation of Spatial Frequency
3.3. Iterative DOA Estimation for OFDM-LFM
Algorithm 1: Proposed FII-DFrFT DOA Estimation Method. |
4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Han, K.; Wang, Y.; Peng, X.; Hong, W. Modulating multicarriers with chirp for MIMO-SAR waveform diversity design. In Proceedings of the 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), KunMing, China, 5–8 August 2013; pp. 1–4. [Google Scholar]
- Gu, F.F.; Zhang, Q.; Chi, L.; Chen, Y.A.; Li, S. A Novel Motion Compensating Method for MIMO-SAR Imaging Based on Compressed Sensing. IEEE Sens. J. 2015, 15, 2157–2165. [Google Scholar] [CrossRef]
- Hu, C.; Wang, J.Y.; Tian, W.M.; Zeng, T.; Wang, R. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays. Sensors 2017, 17, 598. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, X.; Yarovoy, A.G. A Sparse Aperture MIMO-SAR-Based UWB Imaging System for Concealed Weapon Detection. IEEE Trans. Geosci. Remote Sens. 2011, 49, 509–518. [Google Scholar] [CrossRef]
- Krim, H.; Viberg, M. Two decades of array signal processing research—The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Farina, A.; Gini, F.; Greco, M. DOA estimation by exploiting the amplitude modulation induced by antenna scanning. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 1276–1286. [Google Scholar] [CrossRef]
- Aboutanios, E.; Hassanien, A.; Amin, M.G.; Zoubir, A.M. Fast Iterative Interpolated Beamforming for Accurate Single-Snapshot DOA Estimation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 574–578. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef] [Green Version]
- Stoica, P.; Babu, P.; Li, J. SPICE: A Sparse Covariance-Based Estimation Method for Array Processing. IEEE Trans. Signal Process. 2011, 59, 629–638. [Google Scholar] [CrossRef]
- Abeida, H.; Zhang, Q.; Li, J.; Merabtine, N. Iterative Sparse Asymptotic Minimum Variance Based Approaches for Array Processing. IEEE Trans. Signal Process. 2013, 61, 933–944. [Google Scholar] [CrossRef] [Green Version]
- Valaee, S.; Kabal, P. Wideband array processing using a two-sided correlation transformation. IEEE Trans. Signal Process. 1995, 43, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Sun, J.; Cao, X.; Wu, J.; Chen, Y. Wideband Signal DOA Estimation Based on Sparse Asymptotic Minimum Variance. Mod. Radar 2018, 30–35. [Google Scholar] [CrossRef]
- Mishra, K.V.; Kahane, I.; Kaufmann, A.; Eldar, Y.C. High spatial resolution radar using thinned arrays. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 1119–1124. [Google Scholar] [CrossRef]
- Trees, H.L.V. Optimum Array Processing; John Wiley and Sons Inc.: New York, NY, USA, 2002; p. 1433. [Google Scholar]
- Tennant, A.; Chambers, B. Direction finding using a four-element time-switched array system. In Proceedings of the 2008 Loughborough Antennas and Propagation Conference, Loughborough, UK, 17–18 March 2008; pp. 181–184. [Google Scholar] [CrossRef]
- Wu, W.; Cooper, C.C.; Goodman, N.A. Switched-Element Direction Finding. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1209–1217. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Giniy, F.; Grecoy, M.; Liu, Y.; Zhu, J. Iterative Interpolar based Switched Element Direction Finding for Wideband Linear Frequency Modulated Signals. In Proceedings of the 2019 IEEE Radar Conference, Boston, MA, USA, 22–26 April 2019. submitted. [Google Scholar]
- Liu, Y.; Zhao, Y.; Zhu, J.; Xiong, Y.; Tang, B. Iterative High-Accuracy Parameter Estimation of Uncooperative OFDM-LFM Radar Signals Based on FrFT and Fractional Autocorrelation Interpolation. Sensors 2018, 18, 3550. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zishu, H.; Liu, H.M.; Jun, L. The Parameter Setting Problem of Signal OFDM-LFM for MIMO Radar. In Proceedings of the 2008 International Conference on Communications, Circuits and Systems, Fujian, China, 25–27 May 2008; pp. 981–985. [Google Scholar]
- Jayaprakash, A.; Reddy, G.R. Robust Blind Carrier Frequency Offset Estimation Algorithm for OFDM Systems. Wirel. Pers. Commun. 2017, 94, 777–791. [Google Scholar] [CrossRef]
- Howard, S.; Sirianunpiboon, S.; Cochran, D. Detection and characterization of MIMO radar signals. In Proceedings of the 2013 International Conference on Radar, Adelaide, SA, Australia, 9–12 September 2013; pp. 330–334. [Google Scholar] [CrossRef]
- Li, Y.H.; Tang, B. Parameters estimation and detection of MIMO-LFM signals using MWHT. Int. J. Electron. 2016, 103, 439–454. [Google Scholar] [CrossRef]
- Yih-Min, C.; Kuo, I.Y. Design of lowpass filter for digital down converter in OFDM receivers. In Proceedings of the 2005 International Conference on Wireless Networks, Communications and Mobile Computing, Maui, HI, USA, 13–16 June 2005; Volume 2, pp. 1094–1099. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Ankan, O.; Kutay, M.A.; Bozdagi, G. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 1996, 44, 2141–2150. [Google Scholar] [CrossRef] [Green Version]
- Li, C.P.; Dao, X.H.; Guo, P. Fractional derivatives in complex planes. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1857–1869. [Google Scholar] [CrossRef]
- Akay, O.; Boudreaux-Bartels, G.F. Fractional autocorrelation and its application to detection and estimation of linear FM signals. In Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No. 98TH8380), Pittsburgh, PA, USA, 9 October 1998; pp. 213–216. [Google Scholar]
- Ye, S.L.; Aboutanios, E. An Algorithm for the Parameter Estimation of Multiple Superimposed Exponentials in Noise. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, Australia, 19–24 April 2015; pp. 3457–3461. [Google Scholar]
- Ozaktas, H.M.; Mendlovic, D. Fractional Fourier Optics. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1995, 12, 743–751. [Google Scholar] [CrossRef]
- Velni, J.M.; Khorasani, K. Localization of wideband sources in colored noise VIA generalized least squares (GLS). In Proceedings of the IEEE/SP 13th Workshop on Statistical Signal Processing, Bordeaux, France, 17–20 July 2005; pp. 525–530. [Google Scholar] [CrossRef]
MIMO Radar Parameters | Number of antennas M | 1–4 |
Pulse width | 20 s | |
Carrier frequency | 10 GHz | |
Chirp rate | 20 MHz/s | |
Frequency step | 400 MHz | |
Switched-element System Parameters | Number of ULA K | 128 |
Carrier frequency | 10 GHz | |
Interspace of ULA | 0.015 m | |
Switching interval | 0.1 s | |
Searching interval | 0.01 | |
Iteration number Q | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, Y.; Zhu, J.; Wang, J.; Tang, B. A Switched-Element System Based Direction of Arrival (DOA) Estimation Method for Un-Cooperative Wideband Orthogonal Frequency Division Multi Linear Frequency Modulation (OFDM-LFM) Radar Signals. Sensors 2019, 19, 132. https://doi.org/10.3390/s19010132
Liu Y, Zhao Y, Zhu J, Wang J, Tang B. A Switched-Element System Based Direction of Arrival (DOA) Estimation Method for Un-Cooperative Wideband Orthogonal Frequency Division Multi Linear Frequency Modulation (OFDM-LFM) Radar Signals. Sensors. 2019; 19(1):132. https://doi.org/10.3390/s19010132
Chicago/Turabian StyleLiu, Yifei, Yuan Zhao, Jun Zhu, Jun Wang, and Bin Tang. 2019. "A Switched-Element System Based Direction of Arrival (DOA) Estimation Method for Un-Cooperative Wideband Orthogonal Frequency Division Multi Linear Frequency Modulation (OFDM-LFM) Radar Signals" Sensors 19, no. 1: 132. https://doi.org/10.3390/s19010132
APA StyleLiu, Y., Zhao, Y., Zhu, J., Wang, J., & Tang, B. (2019). A Switched-Element System Based Direction of Arrival (DOA) Estimation Method for Un-Cooperative Wideband Orthogonal Frequency Division Multi Linear Frequency Modulation (OFDM-LFM) Radar Signals. Sensors, 19(1), 132. https://doi.org/10.3390/s19010132