Joint Banknote Recognition and Counterfeit Detection Using Explainable Artificial Intelligence
Abstract
:1. Introduction
2. Related Works
2.1. Sequential Banknote Recognition and Counterfeit Detection System
2.2. Grad-CAM
3. Contributions
4. Methods
4.1. Joint Banknote Recognition and Counterfeit Detection System
4.2. Explainable Artificial Intelligence
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Woo Lee, J.; Hong, H.; Wan Kim, K.; Ryoung Park, K. A Survey on Banknote Recognition Methods by Various Sensors. Sensors 2017, 17, 313. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kwon, S.; Pham, T.; Park, K.; Jeong, D.; Yoon, S. A high performance banknote recognition system based on a one-dimensional visible light line sensor. Sensors 2015, 15, 14093–14115. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D.; Nguyen, D.T.; Park, C.; Park, K.R. Deep Learning-Based Multinational Banknote Type and Fitness Classification with the Combined Images by Visible-Light Reflection and Infrared-Light Transmission Image Sensors. Sensors 2019, 19, 792. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, H.Y. Counterfeit Bill Detection Algorithm using Deep Learning. Int. J. Appl. Eng. Res. 2018, 13, 304–310. [Google Scholar]
- Pham, T.; Lee, D.; Park, K. Multi-national banknote classification based on visible-light line sensor and convolutional neural network. Sensors 2017, 17, 1595. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, M. An intelligent paper currency recognition system. Procedia Comput. Sci. 2015, 65, 538–545. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. Densenet: Implementing efficient convnet descriptor pyramids. arXiv 2014, arXiv:1404.1869. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Ren, Y. Banknotes Recognition in Real Time Using ANN. Ph.D. Thesis, Auckland University of Technology, Auckland, New Zealand, 2017. [Google Scholar]
- Zhang, Q. Currency Recognition Using Deep Learning. Ph.D. Thesis, Auckland University of Technology, Auckland, New Zealand, 2018. [Google Scholar]
- Navya Krishna, G.; Sai Pooja, G.; Naga Sri Ram, B.; Yamini Radha, V.; Rajarajeswari, P. Recognition of fake currency note using convolutional neural networks. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 58–63. [Google Scholar]
- Ba, J.; Caruana, R. Do deep nets really need to be deep? In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2014; pp. 2654–2662. [Google Scholar]
- Samek, W.; Wiegand, T.; Müller, K.R. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv 2017, arXiv:1708.08296. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Andreotti, F.; Phan, H.; De Vos, M. Visualising convolutional neural network decisions in automatic sleep scoring. In Proceedings of the Joint Workshop on Artificial Intelligence in Health (AIH) 2018, Stockholm, Sweden, 13–14 July 2018; pp. 70–81. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; So Kweon, I. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Graziani, M.; Andrearczyk, V.; Müller, H. Visual Interpretability for Patch-Based Classification of Breast Cancer Histopathology Images. 2018. Available online: https://openreview.net/forum?id=S1PTal9sz (accessed on 19 August 2019).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In European Conference on Computer Vision; Springer: Amsterdam, The Netherlands, 2016; pp. 21–37. [Google Scholar]
- Alshayeji, M.H.; Al-Rousan, M.; Hassoun, D.T. Detection method for counterfeit currency based on bit-plane slicing technique. Int. J. Multimed. Ubiquitous Eng. 2015, 10, 225–242. [Google Scholar] [CrossRef]
- Bhavani, R.; Karthikeyan, A. A novel method for counterfeit banknote detection. Int. J. Comput. Sci. Eng. 2014, 2, 165–167. [Google Scholar]
- Ambadiyil, S.; Reddy, T.; Teja, B.; Pillai, V. Banknote authentication using normalized cross correlation method. Discovery 2015, 44, 166–172. [Google Scholar]
- Lamsal, S.; Shakya, A. Counterfeit paper banknote identification based on color and texture. In Proceedings of the IOE Graduate Conference, Lalitpur, Nepal, 11–12 December 2015; pp. 160–168. [Google Scholar]
- Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Kim, M.S.; Lim, W.; Park, G.H.; Park, I.; Chang, S.E. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Investig. Dermatol. 2018, 138, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Martinel, N.; Foresti, G.L.; Micheloni, C. Wide-slice residual networks for food recognition. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 567–576. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 2013 International Conference on Machine Learning (ICML), Atlanta GA, USA, 16–21 June 2013; Volume 30, p. 3. [Google Scholar]
- Sivadas, S.; Wu, Z.; Bin, M. Investigation of parametric rectified linear units for noise robust speech recognition. In Proceedings of the Sixteenth Annual Conference of the International Speech Communication Association, Dresden, Germany, 6–10 September 2015. [Google Scholar]
- Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark analysis of representative deep neural network architectures. IEEE Access 2018, 6, 64270–64277. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 19 August 2019).
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Wu, H.; Gu, X. Towards dropout training for convolutional neural networks. Neural Netw. 2015, 71, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Methods | Pros | Cons |
---|---|---|
Sequential method | - Relatively easy to train | - Relatively long inference time |
Joint method using CNN for image classification | - | - Extremely slow - Relatively difficult to train |
Proposed method | - Fast inference time | - Relatively difficult to train |
Nation | Denomination | The Number of Dataset | ||||||
---|---|---|---|---|---|---|---|---|
Train | Validation | Test | ||||||
Series | Type | Genuine | Counterfeit | Genuine | Counterfeit | Genuine | Counterfeit | |
EUR | First | 5 EUR | 3266 | 8 | 182 | 1 | 182 | 1 |
10 EUR | 744 | 76 | 42 | 2 | 42 | 2 | ||
20 EUR | 634 | 140 | 36 | 3 | 36 | 3 | ||
50 EUR | 864 | 536 | 49 | 8 | 49 | 8 | ||
100 EUR | 3110 | 216 | 173 | 3 | 173 | 3 | ||
200 EUR | 824 | 1364 | 46 | 20 | 46 | 20 | ||
500 EUR | 967 | 644 | 54 | 9 | 54 | 9 | ||
Second | 5 EUR | 1535 | 112 | 86 | 2 | 86 | 2 | |
10 EUR | 2304 | 40 | 129 | 1 | 129 | 1 | ||
20 EUR | 1371 | 268 | 77 | 4 | 77 | 4 | ||
50 EUR | 2702 | 72 | 151 | 1 | 151 | 1 | ||
Total | 18,321 | 3476 | 1025 | 54 | 1025 | 54 | ||
USD | 1 USD | 1735 | 0 | 97 | 0 | 97 | 0 | |
2 USD | 3780 | 0 | 210 | 0 | 210 | 0 | ||
5 USD | 2574 | 0 | 143 | 0 | 143 | 0 | ||
10 USD | 5298 | 1664 | 295 | 24 | 295 | 24 | ||
20 USD | 8369 | 5436 | 466 | 76 | 466 | 76 | ||
50 USD | 8263 | 340 | 460 | 5 | 460 | 5 | ||
100 USD | 3564 | 80 | 198 | 2 | 198 | 2 | ||
Total | 33,583 | 7520 | 1869 | 107 | 1869 | 107 |
Nation | Dataset | Number of Banknotes (Counterfeit) | Number of Well-Classified (Counterfeit) | Accuracy (%) | ||
---|---|---|---|---|---|---|
Sequential Method | Joint GoogleNet | Proposed Method | ||||
EUR | Train and validation | 22,876 (3530) | 22,876 (3530) | 22,876/22,876 (100) | 22,876/22,876 (100) | 22,876/22,876 (100) |
Test | 1079 (54) | 1079 (54) | 1079/1079 (100) | 1079/1079 (100) | 1079/1079 (100) | |
USD | Train and validation | 43,079 (7627) | 43,079 (7627) | 43,079/43,079 (100) | 43,079/43,079 (100) | 43,079/43,079 (100) |
Test | 1976 (107) | 1976 (107) | 1976/1976 (100) | 1976/1976 (100) | 1976/1976 (100) |
Model | Processing Time on Average (variance) | |||
---|---|---|---|---|
Preprocessing | Banknote Recognition | Counterfeit Detection | Total | |
Sequential | 3.57 ms (0.46) | 4.18 ms (0.86) | 3.94 ms (0.69) | 11.69 ms (3.02) |
Joint GoogleNet | 3.53 ms (0.12) | 947.12 ms (2817.44) | 950.65 ms (2804.65) | |
Proposed | 3.73 ms (0.49) | 4.36 ms (0.72) | 8.09 ms (1.18) |
Banknote | Input Images | Banknote Recognition | Counterfeit Detection | ||||
---|---|---|---|---|---|---|---|
Visible | Infrared Transmission | Infrared Reflection | Grad-CAM | pGrad-CAM | Grad-CAM | pGrad-CAM | |
20 EUR first series | |||||||
20 EUR second series | |||||||
200 EUR | |||||||
500 EUR | |||||||
1 USD | |||||||
2 USD | |||||||
50 USD | |||||||
100 USD |
Banknote | Method | Input Example Images | Explainable Artificial Intelligence | ||||
---|---|---|---|---|---|---|---|
Visible | Infrared Transmission | Infrared Reflection | Banknote Denomination | Banknote Direction | Counterfeit Detection | ||
20 EUR first series | Grad-CAM | ||||||
pGrad-CAM | |||||||
100 EUR | Grad-CAM | ||||||
pGrad-CAM | |||||||
10 USD | Grad-CAM | ||||||
pGrad-CAM | |||||||
20 USD | Grad-CAM | ||||||
pGrad-CAM |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Kim, J. Joint Banknote Recognition and Counterfeit Detection Using Explainable Artificial Intelligence. Sensors 2019, 19, 3607. https://doi.org/10.3390/s19163607
Han M, Kim J. Joint Banknote Recognition and Counterfeit Detection Using Explainable Artificial Intelligence. Sensors. 2019; 19(16):3607. https://doi.org/10.3390/s19163607
Chicago/Turabian StyleHan, Miseon, and Jeongtae Kim. 2019. "Joint Banknote Recognition and Counterfeit Detection Using Explainable Artificial Intelligence" Sensors 19, no. 16: 3607. https://doi.org/10.3390/s19163607
APA StyleHan, M., & Kim, J. (2019). Joint Banknote Recognition and Counterfeit Detection Using Explainable Artificial Intelligence. Sensors, 19(16), 3607. https://doi.org/10.3390/s19163607