A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theories
2.1.1. Theoretical Analysis of DLD
2.1.2. Theories of Concentration Gradient Generator
2.2. Sample Preparation
2.3. System Design and Operation
3. Results and Discussion
3.1. Microalgae Separation
3.1.1. Analysis of Microalgae Movement
3.1.2. The Effect of Flow Rate on Separation Efficiency
3.1.3. The Separation of Mixed Microalgae
3.2. Microalgae Inactivation Using Concentration Gradient Generator
3.3. Comparison between the Fluorescence Method and Microscopic Method
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adamczak, M.; Bornscheuer, U.T.; Bednarski, W. The application of biotechnological methods for the synthesis of biodiesel. Eur. J. Lipid Sci. Technol. 2009, 111, 800–813. [Google Scholar] [CrossRef]
- Solimeno, A.; Parker, L.; Lundquist, T.; García, J. Integral microalgae-bacteria model (BIO_ALGAE): Application to wastewater high rate algal ponds. Sci. Total Environ. 2017, 601, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Brocks, J.J.; Jarrett, A.J.; Sirantoine, E.; Hallmann, C.; Hoshino, Y.; Liyanage, T. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 2017. [Google Scholar] [CrossRef] [PubMed]
- Bilan, M.I.; Klochkova, N.G.; Shashkov, A.S.; Usov, A.I. Polysaccharides of Algae 71*. Polysaccharides of the Pacific brown alga Alaria marginata. Russ. Chem. Bull. 2018, 67, 137–143. [Google Scholar] [CrossRef]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Zainan, N.H.; Srivatsa, S.C.; Li, F.; Bhattacharya, S. Quality of bio-oil from catalytic pyrolysis of microalgae, Chlorella vulgaris. Fuel 2018, 223, 12–19. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wu, X.; Zong, J.; Wei, W. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip. Electrophoresis 2019, 40, 969–978. [Google Scholar] [CrossRef]
- Bolton, J.J. Algal culturing techniques. J. Exp. Mar. Biol. Ecol. 2006, 336, 262. [Google Scholar] [CrossRef]
- Alsteens, D.; Heykel, T.; Patrice, S.; Dufrêne, Y.F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 2013, 4, 2926. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Maw, M.; Song, Y.; Pan, X.; Sun, Y.; Lib, D. Detection of size spectrum of microalgae cells in an integrated underwater microfluidic device. J. Exp. Mar. Biol. Ecol. 2015, 473, 129–137. [Google Scholar] [CrossRef]
- Elvira, K.S.; i Solvas, X.C.; Wootton, R.C.R.; DeMello, A.J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Sonker, M.; Ros, A. Dielectrophoresis: From molecular to micrometer scale analytes. Anal. Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Cetin, B.; Wu, Z.; Dongqing, L. Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim. Acta 2009, 54, 1715–1720. [Google Scholar] [CrossRef]
- Cetin, B.; Kang, Y.; Wu, Z.; Li, D. Continuous particle separation by size via AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes. Electrophoresis 2009, 30, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Schoch, R.B.; Stevens, A.L.; Tannenbaum, S.R.; Han, J. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotechnol. 2007, 2, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.L.; He, X.K.; Han, Y.; Du, L.; Zhao, L.; Zhe, J. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures. Biomicrofluidics 2014, 8, 3043. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, M.; Liu, C.; Zhang, Y.; Liu, D.; Liu, W.; Hu, G.; Jiang, X. Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 2012, 12, 3952. [Google Scholar] [CrossRef]
- Dincau, B.M.; Arian, A.; Taylor, H.; Chen, X.; Kim, J. Deterministic lateral displacement (DLD) in the high Reynolds number regime: High-throughput and dynamic separation characteristics. Microfluid. Nanofluidics 2018, 22, 59. [Google Scholar] [CrossRef]
- Loutherback, K.; Chou, K.S.; Newman, J.; Puchalla, J.; Austin, R.H.; Sturm, J.C. Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid. Nanofluidics 2010, 9, 1143–1149. [Google Scholar] [CrossRef]
- Xavier, M.; Holm, S.H.; Beech, J.P.; Spencer, D.; Tegenfeldt, J.O.; Oreffo, R.O.C.; Hywel, M. Label-free enrichment of primary human skeletal progenitor cells using deterministic lateral displacement. Lab Chip 2019, 19, 513–523. [Google Scholar] [CrossRef]
- Hyun, J.C.; Hyun, J.; Wang, S.; Yang, S. Improved pillar shape for deterministic lateral displacement separation method to maintain separation efficiency over a long period of time. Sep. Purif. Technol. 2017, 172, 258–267. [Google Scholar] [CrossRef]
- Roberto, C.; Skelley, A.M.; Gandhi, K.; Inglis, D.W.; Sturm, J.C.; Civin, C.I.; Ward, T. Deterministic Lateral Displacement: The Next-Generation CAR T-Cell Processing? SLAS Technol. Transl. Life Sci. Innov. 2018. [Google Scholar] [CrossRef]
- Kim, H.; Kang, D.; Jung, S.W. Development and application of an acoustic system for harmful algal blooms (HABs, red tide) detection using an ultrasonic digital sensor. Ocean Sci. J. 2018, 53, 1–9. [Google Scholar] [CrossRef]
- Vila, M.; Giacobbe, M.G.; Masó, M.; Gangemi, E.; Penna, A.; Sampedro, N.; Azzaro, F.; Camp, J.; Galluzzic, L. A comparative study on recurrent blooms of Alexandrium minutum in two Mediterranean coastal areas. Harmful Algae 2005, 4, 673–695. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Fleming, L.E.; Squicciarini, D.; Backer, L.C.; Clark, R.; Abraham, W.; Benson, J.; Cheng, Y.S.; Johnson, D.; Pierce, R.; et al. Literature review of Florida red tide: Implications for human health effects. Harmful Algae 2004, 3, 99–115. [Google Scholar] [CrossRef]
- Carney, K.J.; Minton, M.S.; Holzer, K.K.; Miller, A.W.; McCann, L.D.; M, G. Ruiz. Evaluating the combined effects of ballast water management and trade dynamics on transfers of marine organisms by ships. PLoS ONE 2017, 12, e0172468. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, W.; Guo, X.; Liu, L. Inactivation of, Scrippsiella trochoidea, cysts by different physical and chemical methods: Application to the treatment of ballast water. Mar. Pollut. Bull. 2018, 126, 150–158. [Google Scholar] [CrossRef]
- Mccollin, T.; Shanks, A.M.; Dunn, J. The efficiency of regional ballast water exchange: Changes in phytoplankton abundance and diversity. Harmful Algae 2007, 6, 531–546. [Google Scholar] [CrossRef]
- Davidson, I.C.; Minton, M.S.; Carney, K.J.; Ruiz, G.M. Pioneering patterns of ballast treatment in the emerging era of marine vector management. Mar. Policy 2017, 78, 158–162. [Google Scholar] [CrossRef]
- Holm-Hansen, O.; Booth, C.R. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol. Oceanogr. 1966, 11, 510–519. [Google Scholar] [CrossRef]
- Dang, T.; Imai, T.; Le, T.V.; Nguyen, D.K.; Higuchi, T.; Kanno, A.; Yamamoto, K.; Sekine, M. Synergistic effect of pressurized carbon dioxide and sodium hypochlorite on the inactivation of Enterococcus sp. in seawater. Water Res. 2016, 106, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Myint, M.; Junsheng, W.; Fabo, L.; Jiang, J.; Song, Y.; Pan, X. Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water. Int. J. Mol. Sci. 2015, 16, 25560–25575. [Google Scholar]
- Wang, J.; Zhao, J.; Wang, Y.; Wang, W.; Gao, Y.; Xu, R.; Zhao, W. A new microfluidic device for classification of microalgae cells based on simultaneous analysis of chlorophyll fluorescence, side light scattering, resistance pulse sensing. Micromachines 2016, 7, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quek, R.; Le, D.V.; Chiam, K.H. Separation of deformable particles in deterministic lateral displacement devices. Phys. Rev. E 2011, 83, 056301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcgrath, J.; Jimenez, M.; Bridle, H. Deterministic lateral displacement for particle separation: A review. Lab Chip 2014, 14, 4139–4158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inglis, D.W.; Davis, J.A.; Austin, R.H.; Strum, J.C. Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 2006, 6, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 2012, 12, 515–545. [Google Scholar] [CrossRef]
- Szulczewski, M.L.; Juanes, R. The evolution of miscible gravity currents in horizontal porous layers. J. Fluid Mech. 2013, 719, 82–96. [Google Scholar] [CrossRef]
- Toh, G.; Wang, Z.P.; Yang, C.; Nguyen, N.T. Engineering microfluidic concentration gradient generators for biological applications. Microfluid. Nanofluidics 2014, 16, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Xia, Y.; Qin, L. Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery. J. Power Sources 2016, 304, 293–300. [Google Scholar] [CrossRef]
- Liang, J.; Srinivasan, P.B.; Blawert, C. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy. Electrochim. Acta 2010, 55, 6802–6811. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, H.A.; Baldock, S.J.; Barber, R.W.; Fielden, P.R.; Goddard, N.J.; Mohr, S. Optimisation and analysis of microreactor designs for microfluidic gradient generation using a purpose built optical detection system for entire chip imaging. Lab Chip 2009, 9, 1882–1889. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, G.; Chen, M.; Wang, Y.; Ding, G.; Zhang, Y.; Kang, Y.; Pan, X.D. An integrated microfluidic chip for treatment and detection of microalgae cells. Algal Res. 2019, 42, 101593. [Google Scholar] [CrossRef]
- Vania, P.; Paulo, S.; Vanessa, C.; Minas, G. Optimized SU-8 Processing for Low-Cost Microstructures Fabrication without Cleanroom Facilities. Micromachines 2014, 5, 738–755. [Google Scholar]
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
Level 1 | 0% | 100% | ||||
Level 2 | 0% | 50% | 100% | |||
Level 3 | 0% | 40% | 60% | 100% | ||
Level 4 | 0% | 30% | 50% | 70% | 100% | |
Level 5 | 0% | 20% | 40% | 60% | 80% | 100% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, J.; Zhou, C.; Ding, G.; Chen, M.; Zou, J.; Wang, G.; Kang, Y.; Pan, X. A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization. Sensors 2019, 19, 4940. https://doi.org/10.3390/s19224940
Wang Y, Wang J, Zhou C, Ding G, Chen M, Zou J, Wang G, Kang Y, Pan X. A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization. Sensors. 2019; 19(22):4940. https://doi.org/10.3390/s19224940
Chicago/Turabian StyleWang, Yanjuan, Junsheng Wang, Chen Zhou, Gege Ding, Mengmeng Chen, Jiang Zou, Ge Wang, Yuejun Kang, and Xinxiang Pan. 2019. "A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization" Sensors 19, no. 22: 4940. https://doi.org/10.3390/s19224940
APA StyleWang, Y., Wang, J., Zhou, C., Ding, G., Chen, M., Zou, J., Wang, G., Kang, Y., & Pan, X. (2019). A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization. Sensors, 19(22), 4940. https://doi.org/10.3390/s19224940