Real-Time Monitoring of Jet Trajectory during Jetting Based on Near-Field Computer Vision
Abstract
:1. Introduction
2. The NFCV Method
2.1. Near-Field Image Capture
2.2. Image Preprocessing
2.2.1. Perspective Transformation
- The linear transformation matrix:
- The perspective transformation matrix:
- The translation matrix:
2.2.2. Image Enhancement
2.2.3. Image Segmentation
2.2.4. Morphological Operation
- Dilation:
- Erosion:
- Opening operation:
2.3. Jet Trajectory Feature Extraction
2.3.1. Mean Position Method
2.3.2. Feature Extraction
3. Experimental Results and Discussions
3.1. Experiment Setup
3.2. Experiment Results and Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- China Fire Protection Association. Statistical report of the 17th international fire equipment and technology exchange exhibition. Fire Sci. Technol. 2018, 15, 23–34. [Google Scholar]
- Casey Grant. Research Roadmap for Smart Fire Fighting Summary Report. Nat. Inst. Stand. Technol. 2015, 5, 13–14. [Google Scholar]
- Peng, R.; Zhu, B. Application of Firetrace Automatic Fire Suppression Systems. Build. Sci. 2008, 131, 654–660. [Google Scholar]
- Hopkins, M.; Schoenrock, J.; Budnick, E.K. Fire Suppression Systems. National Institute of Standards and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Artim, N. Automatic Fire Suppression for Historic Structures: Options and Applications. APT Bull. 2003, 34, 4–35. [Google Scholar] [CrossRef]
- Choi, Y.K.; Yoon, B.D.; Kim, E.K.; Shin, M.C. Development of automatic extinguisher using ignition sensing tube for smart fire protection system. Int. J. Precis. Eng. Manuf. 2011, 12, 1015–1021. [Google Scholar] [CrossRef]
- Kumar, K.; Sen, N.; Azid, S.; Mehta, U. A Fuzzy Decision in Smart Fire and Home Security System. Procedia Comput. Sci. 2017, 105, 93–98. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Islam, M.S.; Rahman, M.A. Smart Fire Detection System with Early Notifications Using Machine Learning. Int. J. Comput. Intell. Syst. 2017, 16, 133–143. [Google Scholar]
- Foggia, P.; Saggese, A.; Vento, M. Real-time Fire Detection for Video Surveillance Applications using a Combination of Experts based on Color, Shape and Motion. IEEE Trans. Circuits Syst. Video Technol. 2015, 8215, 1545–1556. [Google Scholar] [CrossRef]
- Celik, T.; Demirel, H. Fire detection in video sequences using a generic color model. Fire Saf. J. 2009, 44, 147–158. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, T.; Zou, J. An Improved Probabilistic Approach for Fire Detection in Videos. Fire Technol. 2014, 50, 745–752. [Google Scholar] [CrossRef]
- Toulouse, T.; Rossi, L.; Akhloufi, M.A.; Pieri, A.; Maldague, X. A multimodal 3D framework for fire characteristics estimation. Meas. Sci. Technol. 2018, 29, 1–14. [Google Scholar] [CrossRef]
- Borges, P.V.K.; Izquierdo, E. A probabilistic approach for vision-based fire detection in videos. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 721–731. [Google Scholar] [CrossRef]
- Qiao, T.; Chen, L.; Pang, Y.; Yan, G.; Miao, C. Integrative binocular vision detection method based on infrared and visible light fusion for conveyor belts longitudinal tear. Measurement 2017, 110, 192–201. [Google Scholar] [CrossRef]
- Yu, B.; Qiao, T.; Zhang, H.; Yan, G. Dual band infrared detection method based on mid-infrared and long infrared vision for conveyor belts longitudinal tear. Measurement 2018, 120, 140–149. [Google Scholar] [CrossRef]
- Che, J.K.; Ratnam, M.M. Real-time monitoring of workpiece diameter during turning by vision method. Measurement 2018, 126, 369–377. [Google Scholar] [CrossRef]
- Leal-Muñoz, E.; Diez, E.; Perez, H.; Vizan, A. Accuracy of a new online method for measuring machining parameters in milling. Measurement 2018, 128, 170–179. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Dai, F.; Bu, Y.; Wang, H. Monocular vision-based underwater object detection. Sensors 2017, 17, 1784. [Google Scholar] [CrossRef] [PubMed]
- Daniel, P.; Diego, G.; García, J. Sorting olive batches for the milling process using image processing. Sensors 2015, 15, 15738–15754. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xin, B.; Deng, N.; Li, J.; Liu, N. Single vision based identification of yarn hairiness using adaptive threshold and image enhancement method. Measurement 2018, 128, 220–230. [Google Scholar] [CrossRef]
- Dema, M.; Turner, C.; Sari-Sarraf, H.; Hequet, E. Machine Vision System for Characterizing Horizontal Wicking and Drying Using an Infrared Camera. IEEE Trans. Ind. Inform. 2016, 12, 493–502. [Google Scholar] [CrossRef]
- McNeil, J.G.; Lattimer, B.Y. Robotic Fire Suppression Through Autonomous Feedback Control. Fire Technol. 2017, 53, 1171–1199. [Google Scholar] [CrossRef]
- Kim, J.H.; Lattimer, B.Y. Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot. Fire Saf. J. 2015, 72, 40–49. [Google Scholar] [CrossRef]
- McNeil, J.G.; Lattimer, B.Y. Real-Time Classification of Water Spray and Leaks for Robotic Firefighting. IGI Global 2015, 1, 1–26. [Google Scholar] [CrossRef]
- McNeil, J.G.; Lattimer, B.Y. Autonomous Fire Suppression System for Use in High and Low Visibility Environments by Visual Servoing. Fire Technol. 2016, 52, 1343–1368. [Google Scholar] [CrossRef]
- Miyashita, T.; Sugawa, O.; Imamura, T. Modeling and analysis of water discharge trajectory with large capacity monitor. Fire Saf. J. 2014, 63, 18. [Google Scholar] [CrossRef]
- Chen, T.; Yuan, H.; Su, G.; Fan, W. An automatic fire searching and suppression system for large spaces. Fire Saf. J. 2004, 39, 297–307. [Google Scholar] [CrossRef]
- Yuan, H.Y. Fire location and suppression with automatic hydrant in large space. NRIFD Symp.-Sci. 2002, 6, 17–19. [Google Scholar]
- Nam, S.; Braga, A.; Kung, H.; Troup, J. Fire Protection For Non-storage Occupancies With High Ceiling Clearances. Fire Saf. J. 2003, 7, 493–504. [Google Scholar] [CrossRef]
- Xin, Y.; Thumuluru, S.; Jiang, F. An Experimental Study of Automatic Water Cannon Systems for Fire Protection of Large Open Spaces. Fire Technol. 2014, 50, 233–248. [Google Scholar] [CrossRef]
- Xin, Y. Experimental Study on Fire Extinguishing Characteristics of Automatic Sprinkler System. In Proceedings of the Sixth International Conference on Intelligent Systems Design and Engineering Applications, Guiyang, China, 18–19 August 2015; pp. 389–392. [Google Scholar]
- Hatton, A.P.; Leech, C.M.; Osborne, M.J. Computer simulation of the trajectories of large water jets. Int. J. Heat Fluid Flow 1985, 6, 137–141. [Google Scholar] [CrossRef]
- Alter, T.D. 3-D Pose from 3 Points Using Weak-Perspective. IEEE Trans. Pattern Anal. Mach. 1994, 8, 802–808. [Google Scholar] [CrossRef]
- Carlbom, I.; Paciorek, J. Planar Geometric Projections and Viewing Transformations. ACM Comput. Surv. 1978, 10, 465–502. [Google Scholar] [CrossRef]
- Gilboa, G.; Sochen, N.; Zeevi, Y.Y. Image enhancement and denoising by complex diffusion processes. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1020–1036. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 2, 165–168. [Google Scholar] [CrossRef]
- Zhou, X.; Podoleanu, A.G.; Yang, Z.; Yang, T.; Zhao, H. Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns. Opt. Express 2012, 20. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Ono, N.; Sagayama, S. A Structure-Synthesis Image Inpainting Algorithm Based on Morphological Erosion Operation. Congr. Image Signal Process. 2008, 6, 530–535. [Google Scholar]
- Chudasama, D.; Patel, T.; Joshi, S.; Prajapati, G.I. Image Segmentation using Morphological Operations. Int. J. Comput. Appl. Technol. 2015, 117, 16–19. [Google Scholar]
- Sallam, K.A.; Dai, Z.; Faeth, G.M. Liquid breakup at the surface of turbulent round liquid jets in still gases. Int. J. Multiph. Flow 2002, 28, 427–449. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, D.Z. Far-field properties of aerated water jets in air. Int. J. Multiph. Flow 2015, 76, 158–167. [Google Scholar] [CrossRef]
Error Range (m) | Amount | Average Magnitude of Error(m) | Mean Absolute Percentage Error (%) | Average Processing Time (s) |
---|---|---|---|---|
<1.0 | 20 | 0.59 | 4.35 | 0.86 |
1.0–2.0 | 8 | 1.54 | 4.23 | 0.85 |
>2.0 | 2 | 2.55 | 6.52 | 0.88 |
Mean value | 30 | 0.97 | 4.46 | 0.86 |
Category | Percentage Error (%) | Amount | Mean Absolute Percentage Error (%) | Average Processing Time (s) |
---|---|---|---|---|
Spreadsheet | <5.0 5.0–10.0 >2.0 Mean value | 6 5 1 12 | 3.6 8.6 14.7 6.3 | None |
NFCV | <5.0 5.0–10.0 >2.0 Mean value | 19 11 0 30 | 3.1 6.9 0 4.5 | 0.88 0.87 0 0.88 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Li, W.; Lin, D.; Zhao, G. Real-Time Monitoring of Jet Trajectory during Jetting Based on Near-Field Computer Vision. Sensors 2019, 19, 690. https://doi.org/10.3390/s19030690
Zhu J, Li W, Lin D, Zhao G. Real-Time Monitoring of Jet Trajectory during Jetting Based on Near-Field Computer Vision. Sensors. 2019; 19(3):690. https://doi.org/10.3390/s19030690
Chicago/Turabian StyleZhu, Jinsong, Wei Li, Da Lin, and Ge Zhao. 2019. "Real-Time Monitoring of Jet Trajectory during Jetting Based on Near-Field Computer Vision" Sensors 19, no. 3: 690. https://doi.org/10.3390/s19030690
APA StyleZhu, J., Li, W., Lin, D., & Zhao, G. (2019). Real-Time Monitoring of Jet Trajectory during Jetting Based on Near-Field Computer Vision. Sensors, 19(3), 690. https://doi.org/10.3390/s19030690