Identification and Compensation of Dynamic Interaction in a Non-Contact Dual-Stage Actuator System
Abstract
:1. Introduction
2. Description of the Dual-Stage Actuator (DSA) System
2.1. Mechanical Structure
2.2. Measurement System and Control Strategy
3. Generation Mechanism of Dynamic Interaction
4. Identification and Compensation of Interaction
4.1. Identification of Disturbance Forces
4.1.1. Position-Dependent Disturbance Forces (PDDFs)
4.1.2. Velocity-Dependent Disturbance Forces (VDDFs)
4.2. Compensation of Disturbance Forces
4.2.1. Force Feedforward Compensation
4.2.2. Verifications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kanai, M.; Takeuchi, N.; Kinoshita, H. An elastic fine positioning mechanism applied to contactless X-Y table. Jpn. Soc. Precis. Eng. B 1983, 17, 265–266. [Google Scholar]
- Sharon, A.; Hardt, D. Enhancement of Robot Accuracy using Endpoint Feedback and a Macro-Micro Manipulator System. In Proceedings of the American Control Conference, San Diego, CA, USA, 6–8 June 1984; pp. 1836–1845. [Google Scholar]
- Luttrell, D.E.; Dow, T.A. Development of a High-Speed System to Control Dynamic Behavior of Mechanical Structures. Precis. Eng. 1987, 9, 191–200. [Google Scholar] [CrossRef]
- Pahk, H.J.; Lee, D.S.; Park, J.H. Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation. Int. J. Mach. Tool Manuf. 2001, 41, 51–63. [Google Scholar] [CrossRef]
- Kim, B.S.; Li, J.W.; Tsao, T.C. Two-parameter robust repetitive control with application to a novel dual-stage actuator for noncircular machining. IEEE-ASME Trans. Mech 2004, 9, 644–652. [Google Scholar] [CrossRef]
- Elfizy, A.T.; Bone, G.M.; Elbestawi, M.A. Design and control of a dual-stage feed drive. Int. J. Mach. Tool Manuf. 2005, 45, 153–165. [Google Scholar] [CrossRef]
- Liu, C.H.; Jywe, W.Y.; Jeng, Y.R.; Hsu, T.H.; Li, Y. Design and control of a long-traveling nano-positioning stage. Precis. Eng. 2010, 34, 497–506. [Google Scholar] [CrossRef]
- Kim, K.; Choi, Y.M.; Gweon, D.G.; Lee, M.G. A novel laser micro/nano-machining system for FPD process. J. Mater. Process. Technol. 2008, 201, 497–501. [Google Scholar] [CrossRef]
- Kawashima, K.; Arai, T.; Tadano, K.; Fujita, T.; Kagawa, T. Development of coarse/fine dual stage using pneumatically driven bellows actuator and cylinder with air bearings. Precis. Eng. 2010, 34, 526–533. [Google Scholar] [CrossRef]
- Fujita, T.; Matsubara, A.; Kono, D.; Yamaji, I. Dynamic characteristics and dual control of a ball screw drive with integrated piezoelectric actuator. Precis. Eng. 2010, 34, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Sharon, A.; Hogan, N.; Hardt, D.E. The macro/micro manipulator: An improved architecture for robot control. Robot. Cim-Int. Manuf. 1993, 10, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Nayak, A.; Weng, M.; Goker, T. Dual Stage Head Actuator Assembly for Tape Drive. U.S. Patent 8059355, 15 November 2011. [Google Scholar]
- Hahn, P.; Chai, W.K.; Ee, K.C. Dual Stage Actuator Suspension Having Single Microactuator and Employing Pseudo Symmetry to Achieve Suspension Balance. U.S. Patent 8228642, 24 July 2012. [Google Scholar]
- Bedin, N.; Vieira Flores, J. Recent Advances on the Design and Control of Macro/Micro Actuators. Recent Pat. Mech. Eng. 2013, 6, 1–10. [Google Scholar]
- Ouyang, P.R. A spatial hybrid motion compliant mechanism: Design and optimization. Mechatronics 2011, 21, 479–489. [Google Scholar] [CrossRef]
- Hodac, A.; Siegwart, R.Y. Decoupled macro/micro-manipulator for fast and precise assembly operations: Design and experiments. In Proceedings of the Photonics East’99, International Society for Optics and Photonics, Boston, MA, USA, 19–22 September 1999; pp. 122–130. [Google Scholar]
- In-Mook, C.; Dong-June, C.; Hyun, K.S. Long-stroke tracking actuator for both coarse and fine motion in optical disk drives. Mechatronics 2003, 13, 259–272. [Google Scholar]
- Liu, Y.; Li, T.; Sun, L. Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging. Sci. China Ser. E-Technol. Sci. 2009, 52, 1858–1865. [Google Scholar] [CrossRef]
- Zheng, J.G.; Guoxiao, W. Modeling and control design of dual-actuator system for hard disk drives. In Proceedings of the Fifth International Conference on Power Electronics and Drive Systems, Singapore, 17–20 November 2003; pp. 1674–1679. [Google Scholar]
- Schroeck, S.; Messner, W.; McNab, R. On compensator design for linear time-invariant dual-input single-output systems. IEEE/ASME Trans. Mechatron. 2001, 6, 50–57. [Google Scholar] [CrossRef]
- Cherubini, G.; Chung, C.C.; Messner, W.C.; Moheimani, S.R. Control methods in data-storage systems. IEEE Trans. Control Syst. 2012, 20, 296–322. [Google Scholar] [CrossRef]
- Liu, Y.T.; Fung, R.F.; Wang, C.C. Precision position control using combined piezo-VCM actuators. Precis. Eng. 2005, 29, 411–422. [Google Scholar] [CrossRef]
- Qingsong, X. Design and Development of a Flexure-Based Dual-Stage Nanopositioning System with Minimum Interference Behavior. IEEE Trans. Autom. Sci. Eng. 2012, 9, 554–563. [Google Scholar]
- Tuma, T.; Haeberle, W.; Rothuizen, H.; Lygeros, J.; Pantazi, A.; Sebastian, A. A dual-stage nanopositioning approach to high-speed scanning probe microscopy. In Proceedings of the IEEE 51st Annual Conference on Decision and Control (CDC), Grand Wailea, HI, USA, 10–13 December 2012; pp. 5079–5084. [Google Scholar]
- Shinno, H.; Hashizume, H. High Speed Nanometer Positioning Using a Hybrid Linear Motor. Cirp. Ann.-Manuf. Technol. 2001, 50, 243–246. [Google Scholar] [CrossRef]
- Yonmook, P.; Jiho, U.; Hosun, Y. Control of ultra precision hybrid stage. In Proceedings of the 2005 IEEE International Conference on Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005; pp. 906–910. [Google Scholar]
- Song, Y.; Wang, J.; Yang, K.; Yin, W.; Zhu, Y. A dual-stage control system for high-speed, ultra-precise linear motion. Int. J. Adv. Manuf. Technol. 2010, 48, 633–643. [Google Scholar] [CrossRef]
- Bulter, H. Magnetic disturbance comensation for a reticle stage in lithographic tool. Mechatronics 2013, 23, 559–565. [Google Scholar]
- Mishra, S.; Coaplen, J.; Tomizuka, M. Precision Positioning of Wafer Scanners Segmented Iterative Learning Control for Nonrepetitive Disturbances [Applications of Control]. IEEE Control Syst. 2007, 27, 20–25. [Google Scholar]
- Rotariu, I.; Steinbuch, M.; Ellenbroek, R. Adaptive Iterative Learning Control for High Precision Motion Systems, Control Systems Technology. IEEE Trans. Control Syst. Technol. 2008, 16, 1075–1082. [Google Scholar] [CrossRef]
- Heertjes, M.; Tso, T. Nonlinear iterative learning control with applications to lithographic machinery. Control Eng. Prat. 2007, 15, 1545–1555. [Google Scholar] [CrossRef]
- Hol, S.A.J.; Lomonova, E.; Vandenput, A.J.A. Design of a magnetic gravity compensation system. Precis. Eng. 2006, 30, 265–273. [Google Scholar] [CrossRef]
Short Stroke Stage | Long Stroke Stage | |
---|---|---|
Mass | 12.11 kg | 95.3 kg |
Dominant eigenfrequency | Z: 311 Hz; Y: > 1000 Hz | Y: 278 Hz |
Required acceleration | X: 60 m/s2 | 60 m/s2 |
Required scan speed | Y: 1 m/s | 1 m/s |
Required range | X: 2 mm; Y: 2 mm; Z: 0.8 mm | 280 mm |
Current accuracy | X:80 nm; Y: 60 nm; Z:80 nm; | 11 μm |
Current bandwidth | X: 50 Hz; Y: 75 Hz; Z:50 Hz | 20 Hz |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Hu, J.; Li, C.; Tan, J. Identification and Compensation of Dynamic Interaction in a Non-Contact Dual-Stage Actuator System. Sensors 2019, 19, 1053. https://doi.org/10.3390/s19051053
Wang S, Hu J, Li C, Tan J. Identification and Compensation of Dynamic Interaction in a Non-Contact Dual-Stage Actuator System. Sensors. 2019; 19(5):1053. https://doi.org/10.3390/s19051053
Chicago/Turabian StyleWang, Shaokai, Jinxin Hu, Changqi Li, and Jiubin Tan. 2019. "Identification and Compensation of Dynamic Interaction in a Non-Contact Dual-Stage Actuator System" Sensors 19, no. 5: 1053. https://doi.org/10.3390/s19051053
APA StyleWang, S., Hu, J., Li, C., & Tan, J. (2019). Identification and Compensation of Dynamic Interaction in a Non-Contact Dual-Stage Actuator System. Sensors, 19(5), 1053. https://doi.org/10.3390/s19051053