Local Strand-Breakage Detection in Multi-Strand Anchorage System Using an Impedance-Based Stress Monitoring Method—Feasibility Study
Abstract
:1. Introduction
2. Analysis of Stress Fields in a Multi-Strand Anchorage System
2.1. FE Model of a Multi-Strand Anchorage System
2.2. Variation of Stress Fields Due to Local Strand Breakage
2.2.1. Effects of Local Strand Breakage on Stress Components
2.2.2. Sensitivity of Circumferential Stress to Local Strand Breakage
3. Impedance-Based Stress Monitoring Method
3.1. PZT Interface for Impedance Measurement
3.2. Impedance-Based Stress Monitoring via PZT Interface
4. Hoop-Type PZT Interface for Multi-Strand Anchorage System
4.1. Design of a Hoop-Type PZT Interface
4.2. Dynamic Characteristics of the Hoop-Type PZT Interface
4.2.1. FE Model of Segmental PZT Interface
4.2.2. Predetermination of Sensitive Frequency Band
5. Numerical Evaluation of Hoop-Type PZT Interface for Local Strand-Breakage Detection
5.1. FE Model of a Multi-Strand Anchorage with a Hoop-Type PZT Interface
5.2. Numerical Impedance Responses of Hoop-Type PZT Interface
5.3. Sensitivity of PZT Sensors’ Impedance Signatures for Locally Damaged Strands
5.4. Linear Tomography of RMSD Index for Localization of Locally Damaged Strands
5.4.1. Combination 1: All PZTs 1–6
5.4.2. Combination 2: Three PZTs 1, 3, and 5
5.4.3. Combination 3: Three PZTs 2, 4, and 6
6. Experimental Feasibility of Hoop PZT Interface for Impedance-Based Stress Monitoring
6.1. Experimental Setup
6.2. Impedance-Based Stress Monitoring Result
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Selection of Spring Constants for Simulating a Concrete Block
References
- Tadros, M.K.; Omaishin, N.A.; Seguirant, S.J.; Gallt, J.G. Prestress Losses in Pretensioned High-Strength Concrete Bridge Girders; Transportation Research Board: Washington, DC, USA, 2003. [Google Scholar]
- Goins, D. Motor speedway bridge collapse caused by corrosion. Mater. Perform. 2000, 36, 18–19. [Google Scholar]
- Woodward, R.; Williams, F. Collapse of Ynys-Y-Gwas bridge, West Glamorgan. Proc. Inst. Civil. Eng. 1988, 84, 635–669. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, H.W.; Park, Y.H.; Yang, I.H.; Kim, Y.S. FBG sensors encapsulated into 7-wire steel strand for tension monitoring of a prestressing tendon. Adv. Struct. Eng. 2012, 15, 907–917. [Google Scholar] [CrossRef]
- Abdullah, A.B.M.; Rice, J.A.; Hamilton, H.R. Wire breakage detection using relative strain variation in unbonded posttensioning anchors. J. Bridge Eng. 2015, 20, 1–12. [Google Scholar] [CrossRef]
- Bartoli, I.; Salamone, S.; Phillips, R.; Lanza Di Scalea, F.; Sikorsky, C.S. Use of interwire ultrasonic leakage to quantify loss of prestress in multiwire tendons. J. Eng. Mech. 2011, 137, 324–333. [Google Scholar] [CrossRef]
- Sevillano, E.; Sun, R.; Perera, R. Damage detection based on power dissipation measured with PZT sensors through the combination of electro-mechanical impedances and guided waves. Sensors 2016, 16, 639. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.P.; Chaudhry, Z.; Liang, C.; Rogers, C.A. Truss structure integrity identification using PZT sensor-actuator. J. Intell. Mater. Syst. Struct. 1995, 6, 134–139. [Google Scholar] [CrossRef]
- Zagrai, A.N.; Giurgiutiu, V. Electro-mechanical impedance method for crack detection in thin plates. J. Intell. Mater. Syst. Struct. 2001, 12, 709–718. [Google Scholar] [CrossRef]
- Kim, J.T.; Park, J.H.; Hong, D.S.; Park, W.S. Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches. Eng. Struct. 2010, 32, 115–128. [Google Scholar] [CrossRef]
- Min, J.; Yun, C.B.; Hong, J.W. An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems. Smart Struct. Syst. 2016, 17, 107–122. [Google Scholar] [CrossRef]
- Nguyen, K.D.; Lee, S.Y.; Lee, P.Y.; Kim, J.T. Wireless SHM for Bolted Connections via Multiple PZT-Interfaces and Imote2-Platformed Impedance Sensor Node. In Proceedings of the 6th International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST2011), Dalian, China, 25–26 July 2011. [Google Scholar]
- Huynh, T.C.; Kim, J.T. Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique. Math. Probl. Eng. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Huynh, T.C.; Kim, J.T. Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique. Smart Struct. Syst. 2017, 20, 181–195. [Google Scholar]
- Huynh, T.C.; Park, Y.H.; Park, J.H.; Kim, J.T. Feasibility verification of Mountable PZT-interface for impedance monitoring in tendon-anchorage. Shock Vib. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- VSLKOREA. Post-Tensioning Systems. 2012. Available online: http://www.daorenc.com/kr/wp-content/uploads/2016/05/pt.pdf (accessed on 12 June 2018).
- Liang, C.; Sun, F.P.; Rogers, C.A. Coupled electro-mechanical analysis of adaptive material systems—Determination of the actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct. 1994, 5, 12–20. [Google Scholar] [CrossRef]
- Ryu, J.Y.; Huynh, T.C.; Kim, J.T. Tension force estimation in axially loaded members using wearable piezoelectric interface technique. Sensors 2018, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Clough, R.; Penzien, J. Dynamics of Structures, 3rd ed.; University Ave; Berkeley, CA, USA; Computers & Structures, Inc.: Berkeley, CA, USA, 1995. [Google Scholar]
- Ai, D.; Luo, H.; Wang, C.; Zhu, H. Monitoring of the load-induced RC beam structural tension/compression stress and damage using piezoelectric transducers. Eng. Struct. 2018, 154, 38–51. [Google Scholar] [CrossRef]
- Standards, C. Design and Construction of Building Components with Fibre-Reinforced Polymers; CSA Publications: Mississauga, ON, Canada, 2009. [Google Scholar]
- Bachmann, H.; Ammann, W.J.; Deischl, F.; Eisenmann, J.; Floegl, I.; Hirsch, G.H.; Klein, G.K.; Lande, G.J.; Mahrenholtz, O.; Natke, H.G.; et al. Vibration Problems in Structures: Practical Guidelines; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Hagood, N.W.; Chung, W.H.; Von Flotow, A. Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1990, 1, 327–354. [Google Scholar] [CrossRef]
- Mascarenas, D.L.; Todd, M.D.; Park, G.; Farrar, C.R. Development of an impedance-based wireless sensor node for structural health monitoring. Smart Mater. Struct. 2007, 16, 2137–2145. [Google Scholar] [CrossRef]
- Min, J.; Park, S.; Yun, C.-B.; Song, B. Development of a low-cost multifunctional wireless impedance sensor node. Smart Struct. Syst. 2010, 6, 689–709. [Google Scholar] [CrossRef]
- Perera, R.; Perez, A.; Garcia-Dieguez, M.; Zapico-Valle, J.L. Active wireless system for structural health monitoring applications. Sensors 2017, 17, 2880. [Google Scholar] [CrossRef] [PubMed]
Parameters | Anchor Head, Bearing Plate, and Wedges |
---|---|
Young’s modulus, E (GPa) | 200 |
Poisson’s ratio, υ | 0.3 |
Mass density, ρ (kg/m3) | 7850 |
Young’s Modulus E, (GPa) | Poisson’s Ratio ν | Mass Density ρ (kg/m3) | Damping Loss Factor η |
---|---|---|---|
145 | 0.30 | 1700 | 0.02 |
Young’s Modulus E, (GPa) | Mass Density ρ (kg/m3) | Damping Loss Factor η | Dielectric Constant, εT33 (Farad/m) | Dielectric Loss Factor δ | Coupling Constant d31 (m/V) |
---|---|---|---|---|---|
62.1 | 7750 | 0.0125 | 1.53 × 10-8 | 0.015 | −1.71 × 10−10 |
Case | Simulation Scenario |
---|---|
Intact | All wedges (Strands 1–7) were assigned by 150 kN |
Case 1 | Strand 1 was broken |
Case 2 | Strand 7 was broken |
Case 3 | Strands 1 and 7 were both broken |
Combination | PZT 1 | PZT 2 | PZT 3 | PZT 4 | PZT 5 | PZT 6 |
---|---|---|---|---|---|---|
1 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
2 | ✓ | ✓ | ✓ | |||
3 | ✓ | ✓ | ✓ |
Case | Applied Prestress Force (kN) | |
---|---|---|
Strand 9 | Strand 1 | |
PS 1 | 0 | 0 |
PS 2 | 49.1 | 0 |
PS 3 | 98.1 | 0 |
PS 4 | 147.2 | 0 |
PS 5 | 147.2 | 49.1 |
PS 6 | 147.2 | 98.1 |
PS 7 | 147.2 | 147.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, N.-L.; Huynh, T.-C.; Kim, J.-T. Local Strand-Breakage Detection in Multi-Strand Anchorage System Using an Impedance-Based Stress Monitoring Method—Feasibility Study. Sensors 2019, 19, 1054. https://doi.org/10.3390/s19051054
Dang N-L, Huynh T-C, Kim J-T. Local Strand-Breakage Detection in Multi-Strand Anchorage System Using an Impedance-Based Stress Monitoring Method—Feasibility Study. Sensors. 2019; 19(5):1054. https://doi.org/10.3390/s19051054
Chicago/Turabian StyleDang, Ngoc-Loi, Thanh-Canh Huynh, and Jeong-Tae Kim. 2019. "Local Strand-Breakage Detection in Multi-Strand Anchorage System Using an Impedance-Based Stress Monitoring Method—Feasibility Study" Sensors 19, no. 5: 1054. https://doi.org/10.3390/s19051054
APA StyleDang, N. -L., Huynh, T. -C., & Kim, J. -T. (2019). Local Strand-Breakage Detection in Multi-Strand Anchorage System Using an Impedance-Based Stress Monitoring Method—Feasibility Study. Sensors, 19(5), 1054. https://doi.org/10.3390/s19051054