A Method for Simultaneously Measuring 6DOF Geometric Motion Errors of Linear and Rotary Axes Using Lasers
Abstract
:1. Introduction
2. 6DOF Geometric Motion Errors of a Linear and Rotary Axis
3. Simultaneous Measurement Method for Linear- and Rotary-Axis 6DOF Geometric Motion Errors
3.1. Measurement System Configuration
3.2. Measuring 6DOF Geometric Motion Errors of the Linear Axis
3.3. Measuring 6DOF Geometric Motion Errors of the Rotary Axis
4. Measurement Principle for Each Single Geometric Motion Error
4.1. Positioning Error of the Linear Axis and Radial Motion Error in the X-Axis Direction of the Rotary Axis
4.2. Straightness Errors of the Linear Axis, Radial Motion Error in the Y-Axis Direction, and Axial Motion Error of the Rotary Axis
4.3. Yaw and Pitch of the Linear Axis, Angular Positioning Error, and tilt Motion error Around the Y-Axis of the Rotary Axis
4.4. Roll of the Linear Axis and tilt Motion Error Around the X-Axis of the Rotary Axis
4.5. Common-Path Compensation for Laser Beam Drift
5. Experimental Setup and Results
5.1. System Development
5.2. Experimental Results of Calibration, Resolution, and Stability
5.3. Experimental Results of the Linear Axis
5.4. Experimental Results of the Rotary Axis
6. Conclusions
7. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, S.; Ding, G.; Qin, S.; Lei, J.; Zhuang, L.; Yan, K. Integrated geometric error modeling, identification and compensation of CNC machine tools. Int. J. Mach. Tools Manuf. 2012, 52, 24–29. [Google Scholar] [CrossRef]
- Khan, A.W.; Chen, W. A methodology for systematic geometric error compensation in five-axis machine tools. Int. J. Adv. Manuf. Technol. 2010, 53, 615–628. [Google Scholar] [CrossRef]
- Vahebi Nojedeh, M.; Habibi, M.; Arezoo, B. Tool path accuracy enhancement through geometrical error compensation. Int. J. Mach. Tools Manuf. 2011, 51, 471–482. [Google Scholar] [CrossRef]
- Alessandro, V.; Gianni, C.; Antonio, S. Axis geometrical errors analysis through a performance test to evaluate kinematic error in a five axis tilting-rotary table machine tool. Precis. Eng. 2015, 39, 224–233. [Google Scholar] [CrossRef]
- ISO230-1:2012. Test Code for Machine Tools—Part 1: Geometric Accuracy of Machines Operating under No-Load or Quasi-Static Conditions. Available online: https://www.iso.org/standard/46449.html (accessed on 12 April 2019).
- Okafor, A.C.; Ertekin, Y.M. Vertical machining center accuracy characterization using laser interferometer: Part 1. Linear positional errors. J. Mech. Work. Technol. 2000, 105, 394–406. [Google Scholar]
- Okafor, A.C.; Ertekin, Y.M. Vertical machining center accuracy characterization using laser interferometer: Part 2. Angular errors. J. Mech. Work. Technol. 2000, 105, 407–420. [Google Scholar]
- Chen, Y.-T.; Lin, W.-C.; Liu, C.-S. Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage. Opt. Lasers Eng. 2017, 92, 94–104. [Google Scholar] [CrossRef]
- Hsieh, H.L.; Pan, S.W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements. Opt. Express 2015, 23, 2451–2465. [Google Scholar] [CrossRef]
- Molnar, G.; Strube, S.; Köchert, P.; Danzebrink, H.U.; Flügge, J. Simultaneous multiple degrees of freedom (DoF) measurement system. Meas. Sci. Technol. 2016, 27. [Google Scholar] [CrossRef]
- Chen, B.; Xu, B.; Yan, L.; Zhang, E.; Liu, Y. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters. Opt. Express 2015, 23, 9052–9073. [Google Scholar] [CrossRef]
- Fan, K.C.; Chen, M.J.; Huang, W.M. A six-degree-of-freedom measurement system for the motion accuracy of linear stages. Int. J. Mach. Tools Manuf. 1998, 38, 155–164. [Google Scholar] [CrossRef]
- Liu, C.S.; Pu, Y.F.; Chen, Y.T.; Luo, Y.T. Design of a Measurement System for Simultaneously Measuring Six-Degree-Of-Freedom Geometric Errors of a Long Linear Stage. Sensors 2018, 18, 3875. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.S.; Lai, J.J.; Luo, Y.T. Design of a Measurement System for Six-Degree-of-Freedom Geometric Errors of a Linear Guide of a Machine Tool. Sensors 2018, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- JENAer Meßtechnik GmbH. ZLM 700/800/900 Dual—Frequency Laser Interferometer. Available online: https://www.jenaer-mt.com/wp-content/uploads/2018/08/Gesamtkatalog_ZLM.pdf (accessed on 30 March 2019).
- ZYGO. ZMI™ Series Displacement Measuring. Available online: https://www.zygo.com/?/met/markets/stageposition/zmi/zmi.htm (accessed on 30 March 2019).
- Chen, C.J.; Lin, P.D.; Jywe, W.Y. An optoelectronic measurement system for measuring 6-degree-of-freedom motion error rotary parts. Opt. Express 2007, 15, 14601–14617. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-R.; Hoang, T.-K.; Yang, S.-H. A new optical measurement system for determining the geometrical errors of rotary axis of a 5-axis miniaturized machine tool. J. Mech. Sci. Technol. 2010, 24, 175–179. [Google Scholar] [CrossRef]
- Holub, M.; Vetiska, J.; Bradac, F.; Vala, M. Application on-the-Fly Measurement of Cnc Machine Tools. MM Sci. J. 2017, 2017, 2085–2089. [Google Scholar] [CrossRef]
- Holub, M.; Jankovych, R.; Andrs, O.; Kolibal, Z. Capability assessment of CNC machining centres as measuring devices. Measurement 2018, 118, 52–60. [Google Scholar] [CrossRef]
- Hong, C.; Ibaraki, S. Non-contact R-test with laser displacement sensors for error calibration of five-axis machine tools. Precis. Eng. 2013, 37, 159–171. [Google Scholar] [CrossRef]
- Ibaraki, S.; Knapp, W. Indirect Measurement of Volumetric Accuracy for Three-Axis and Five-Axis Machine Tools: A Review. Int. J. Autom. Technol. 2012, 6, 110–124. [Google Scholar] [CrossRef]
- Lee, K.-I.; Yang, S.-H. Accuracy evaluation of machine tools by modeling spherical deviation based on double ball-bar measurements. International J. Mach. Tools Manuf. 2013, 75, 46–54. [Google Scholar] [CrossRef]
- Wang, J.; Guo, J. Geometric error identification algorithm of numerical control machine tool using a laser tracker. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 230, 2004–2015. [Google Scholar] [CrossRef]
- Schwenke, H.; Knapp, W.; Haitjema, H.; Weckenmann, A.; Schmitt, R.; Delbressine, F. Geometric error measurement and compensation of machines—An update. CIRP Ann. 2008, 57, 660–675. [Google Scholar] [CrossRef]
- Qibo, F.; Bin, Z.; Cunxing, C.; Cuifang, K.; Yusheng, Z.; Fenglin, Y. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide. Opt. Express 2013, 21, 25805–25819. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Feng, Q.; Zhang, B.; Zhao, Y. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser. Opt. Express 2016, 24, 6735–6748. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, B.; Feng, Q. Measurement system and model for simultaneously measuring 6DOF geometric errors. Opt. Express 2017, 25, 20993–21007. [Google Scholar] [CrossRef]
- Li, J.; Feng, Q.; Bao, C.; Zhao, Y. Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser. Opt. Express 2018, 26, 2535–2545. [Google Scholar] [CrossRef] [PubMed]
- Renishaw. The Benefits of Remote Interferometry for Linear, Angular and Straightness Measurements. Available online: http://www.renishaw.com/media/pdf/en/c5d16ced95164dd7936f75b0f664f8ba.pdf (accessed on 4 March 2019).
Translational Errors | Angular Errors | |||||
---|---|---|---|---|---|---|
Linear Error in X-axis Direction | Linear Error in Y-axis Direction | Linear Error in Z-axis Direction | Angular Error around X-axis | Angular Error around Y-axis | Angular Error around Z-axis | |
Linear axis (X) | ||||||
Rotary axis (C) |
Geometric Motion Error | Calibration | Resolution | Stability | ||
---|---|---|---|---|---|
Measurement Range | Standard Deviation | R2 | Resolution | Standard Deviation | |
Linear error in X-axis direction | 5 m | - | - | 20 pm | 0.04 um |
Linear error in Y-axis direction | ± 100 μm | 0.81 μm | 0.9997 | 100 nm | 0.07 μm |
Linear error in Z-axis direction | ± 100 μm | 0.81 μm | 0.9997 | 100 nm | 0.09 um |
Angular error around X-axis | ± 680 arcsec | - | - | 0.69 arcsec | 0.45 arcsec |
Angular error around Y-axis | ± 200 arcsec | 0.98 arcsec | 1.0 | 0.26 arcsec | 0.21 arcsec |
Angular error around Z-axis | ± 200 arcsec | 0.98 arcsec | 1.0 | 0.26 arcsec | 0.16 arcsec |
Parameter | Repeatability Error | Maximum Comparison Deviation | |
---|---|---|---|
Proposed System | Standard Instruments | ||
Positioning error/μm | - | - | 0.54 |
Straightness error (Y)/μm | ±0.25 | ±0.19 | 0.48 |
Straightness error (Z)/μm | ±0.37 | ±0.30 | 0.42 |
Yaw/arcsec | ±0.17 | ±0.15 | 0.20 |
Pitch/arcsec | ±0.30 | ±0.21 | 0.49 |
Roll/arcsec | ±0.60 | ±0.29 | 1.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, F.; Feng, Q.; Zhang, B.; Li, J. A Method for Simultaneously Measuring 6DOF Geometric Motion Errors of Linear and Rotary Axes Using Lasers. Sensors 2019, 19, 1764. https://doi.org/10.3390/s19081764
Zheng F, Feng Q, Zhang B, Li J. A Method for Simultaneously Measuring 6DOF Geometric Motion Errors of Linear and Rotary Axes Using Lasers. Sensors. 2019; 19(8):1764. https://doi.org/10.3390/s19081764
Chicago/Turabian StyleZheng, Fajia, Qibo Feng, Bin Zhang, and Jiakun Li. 2019. "A Method for Simultaneously Measuring 6DOF Geometric Motion Errors of Linear and Rotary Axes Using Lasers" Sensors 19, no. 8: 1764. https://doi.org/10.3390/s19081764
APA StyleZheng, F., Feng, Q., Zhang, B., & Li, J. (2019). A Method for Simultaneously Measuring 6DOF Geometric Motion Errors of Linear and Rotary Axes Using Lasers. Sensors, 19(8), 1764. https://doi.org/10.3390/s19081764