Recent Advances in Brillouin Optical Time Domain Reflectometry
Abstract
:1. Introduction
2. Performance Improvement of BOTDRs
2.1. Principle of BOTDR
2.2. Spatial Resolution(SR)
2.3. SNR and Measurement Accuracy
2.3.1. Optimization of Seed Laser Performance
2.3.2. Improvement of Probe Pulses Features
2.3.3. Optical Link Optimization
2.3.4. Demodulation Algorithm Optimization
2.4. Measurement Speed
2.5. Cross-Sensitivity
2.6. Others
3. Novel-Fiber-Based Brillouin Sensing
3.1. Plastic (or Polymer) Optical Fibers (POFs)
3.1.1. PFGI-POF
3.1.2. PMMA-POF
3.1.3. PCGI-POF
3.2. Photonic Crystal Fiber (PCF)
3.3. Few-Mode Fiber (FMF)
3.4. Other Special Fibers
4. Applications
4.1. SHM of Large-Range Infrastructure
4.1.1. Tunnel, Bridge and Pavement Monitoring
4.1.2. Long-Range Pipeline Monitoring
4.1.3. Precast Pile Monitoring
4.1.4. Mine Safety Monitoring
4.2. Geological Disaster Prewarning
4.3. Other Applications
5. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Kapron, F.P.; Keck, D.B.; Maurer, R.D. Radiation losses in glass optical waveguides. Appl. Phys. Lett. 1970, 17, 423–425. [Google Scholar] [CrossRef]
- Kapron, F.; Maurer, R.; Teter, M. Theory of backscattering effects in waveguides. Appl. Opt. 1972, 11, 1352–1356. [Google Scholar] [CrossRef]
- Smith, R.G. Optical power handling capacity of low loss optical fibers as determined by stimulated raman and brillouin scattering. Appl. Opt. 1972, 11, 2489–2494. [Google Scholar] [CrossRef]
- Tosi, D. Review and analysis of peak tracking techniques for fiber bragg grating sensors. Sensors 2017, 17, 2368. [Google Scholar] [CrossRef]
- Personick, S.D. Photon probe-an optical-fiber time-domain reflectometer. Bell Syst. Tech. J. 1977, 56, 355–366. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, B.Q.; Wang, Y.C.; Wang, D.; Liu, X.; Bai, Q. Real-time distributed vibration monitoring system using phi-otdr. IEEE Sens. J. 2017, 17, 1333–1341. [Google Scholar] [CrossRef]
- Liu, X.; Jin, B.Q.; Bai, Q.; Wang, Y.; Wang, D.; Wang, Y.C. Distributed fiber-optic sensors for vibration detection. Sensors 2016, 16, 1164. [Google Scholar] [CrossRef] [PubMed]
- Whitbread, T.W.; Wassef, W.S.; Allen, P.M.; Chu, P.L. Profile dependence and measurement of absolute raman scattering cross-section in optical fibres. Electron. Lett. 1989, 25, 1502–1503. [Google Scholar] [CrossRef]
- Culverhouse, D.; Farahi, F.; Pannell, C.; Jackson, D. Potential of stimulated brillouin scattering as sensing mechanism for distributed temperature sensors. Electron. Lett. 1989, 25, 913–915. [Google Scholar] [CrossRef]
- Horiguchi, T.; Kurashima, T.; Tateda, M. Tensile strain dependence of brillouin frequency shift in silica optical fibers. IEEE Photonic Technol. Lett. 1989, 1, 107–108. [Google Scholar] [CrossRef]
- Kurashima, T.; Horiguchi, T.; Tateda, M. Distributed-temperature sensing using stimulated brillouin scattering in optical silica fibers. Opt. Lett. 1990, 15, 1038–1040. [Google Scholar] [CrossRef]
- Kurashima, T.; Horiguchi, T.; Izumita, H.; Furukawa, S.; Koyamada, Y. Brillouin optical-fiber time domain reflectometry. IEICE Trans. Commun. 1993, E76-B, 382–390. [Google Scholar]
- Garus, D.; Krebber, K.; Schliep, F.; Gogolla, T. Distributed sensing technique based on brillouin optical-fiber frequency-domain analysis. Opt. Lett. 1996, 21, 1402–1404. [Google Scholar] [CrossRef]
- Minardo, A.; Bernini, R.; Ruiz-Lombera, R.; Mirapeix, J.; Lopez-Higuera, J.M.; Zeni, L. Proposal of brillouin optical frequency-domain reflectometry (bofdr). Opt. Express 2016, 24, 29994–30001. [Google Scholar] [CrossRef]
- Hotate, K.; Hasegawa, T. Measurement of brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—Proposal, experiment and simulation. IEICE Trans. Electron. 2000, 83, 405–412. [Google Scholar]
- Mizuno, Y.; Zou, W.; He, Z.; Hotate, K. Proposal of brillouin optical correlation-domain reflectometry (bocdr). Opt. Express 2008, 16, 12148–12153. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent progress in brillouin scattering based fiber sensors. Sensors 2011, 11, 4152–4187. [Google Scholar] [CrossRef]
- Motil, A.; Bergman, A.; Tur, M. State of the art of brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2016, 78, 81–103. [Google Scholar] [CrossRef]
- Pei, H.-F.; Teng, J.; Yin, J.-H.; Chen, R. A review of previous studies on the applications of optical fiber sensors in geotechnical health monitoring. Measurement 2014, 58, 207–214. [Google Scholar] [CrossRef]
- Hong, C.; Zhang, Y.; Li, G.; Zhang, M.; Liu, Z. Recent progress of using brillouin distributed fiber optic sensors for geotechnical health monitoring. Sens. Actuators A 2017, 258, 131–145. [Google Scholar] [CrossRef]
- Tosi, D.; Macchi, E.G.; Gallati, M.; Braschi, G.; Cigada, A.; Rossi, S.; Leen, G.; Lewis, E. Fiber-optic chirped fbg for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver. Biomed. Opt. Express 2014, 5, 1799–1811. [Google Scholar] [CrossRef] [PubMed]
- Tosi, D.; Schena, E.; Molardi, C.; Korganbayev, S. Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Opt. Fiber Technol. 2018, 43, 6–19. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, H.; Shi, B.; Sui, H.; Wei, G. Brillouin power spectrum analysis for partially uniformly strained optical fiber. Opt. Laser. Eng. 2009, 47, 976–981. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, H.; Chen, L.; Bao, X. 2 cm spatial-resolution and 2 km range brillouin optical fiber sensor using a transient differential pulse pair. Appl. Opt. 2012, 51, 1229–1235. [Google Scholar] [CrossRef]
- Diakaridia, S.; Pan, Y.; Xu, P.B.; Zhou, D.W.; Wang, B.Z.; Teng, L.; Lu, Z.W.; Ba, D.X.; Dong, Y.K. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair botda based on double-peak spectrum. Opt. Express 2017, 25, 17727–17736. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Feng, C.K.; Zhang, M.J.; Liu, Y.; Wu, C.Y.; Wang, Y.H. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature. Opt. Express 2018, 26, 6962–6972. [Google Scholar] [CrossRef]
- Bao, X.; Webb, D.J.; Jackson, D.A. Combined distributed temperature and strain sensor based on brillouin loss in an optical fiber. Opt. Lett. 1994, 19, 141–143. [Google Scholar] [CrossRef]
- Parker, T.R.; Farhadiroushan, M.; Handerek, V.A.; Rogers, A.J. Temperature and strain dependence of the power level and frequency of spontaneous brillouin scattering in optical fibers. Opt. Lett. 1997, 22, 787–789. [Google Scholar] [CrossRef]
- Kee, H.H.; Lees, G.P.; Newson, T.P. All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous brillouin scattering. Opt. Lett. 2000, 25, 695–697. [Google Scholar] [CrossRef]
- Bao, X.; Li, W.; Li, Y.; Chen, L. Distributed fiber sensors based on stimulated brillouin scattering with centimeter spatial resolution. In Proceedings of the International Conference on Optical Instruments and Technology—Microelectronic and Optoelectronic Devices and Integration, Beijing, China, 16–19 November 2009. [Google Scholar] [CrossRef]
- Naruse, H.; Tateda, M. Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the brillouin backscattered light in an optical fiber. Appl. Opt. 1999, 38, 6516–6521. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Lu, Y.; Dou, R.; Bao, X. Spatial resolution analysis for discrete fourier transform-based brillouin optical time domain reflectometry. Meas. Sci. Technol. 2009, 20, 025202. [Google Scholar] [CrossRef]
- Shibata, R.; Kasahara, H.; Elias, L.P.; Horiguchi, T. Improving performance of phase shift pulse botdr. IEICE Electron. Express 2017, 14, 1–6. [Google Scholar] [CrossRef]
- Koyamada, Y.; Sakairi, Y.; Takeuchi, N.; Adachi, S. Novel technique to improve spatial resolution in brillouin optical time-domain reflectometry. IEEE Photonic Technol. Lett. 2007, 19, 1910–1912. [Google Scholar] [CrossRef]
- Sakairi, Y.; Matsuura, S.; Adachi, S.; Koyamada, Y. Prototype double-pulse botdr for measuring distributed strain with 20-cm spatial resolution. In Proceedings of the 2008 Annual Conference of the SICE, Chofu, Japan, 20–22 August 2008. [Google Scholar]
- Nishiguchi, K.; Li, C.H.; Guzik, A.; Kishida, K. Synthetic spectrum approach for brillouin optical time-domain reflectometry. Sensors 2014, 14, 4731–4754. [Google Scholar] [CrossRef] [PubMed]
- Shibata, R.; Kasahara, H.; Horiguchi, T. Proposal and demonstration of high spatial resolution botdr by correlating signals sampled with narrow- and wide-width window functions. In Proceedings of the 2016 IEEE 6th International Conference on Photonics, Kuching, Malaysia, 14–17 March 2016. [Google Scholar]
- Zan, M.S.D.; Masui, Y.; Horiguchi, T. Differential cross spectrum technique for improving the spatial resolution of botdr sensor. In Proceedings of the IEEE 7th International Conference on Photonics (ICP), Kuah, Malaysia, 9–11 April 2018. [Google Scholar] [CrossRef]
- Li, Q.; Gan, J.; Wu, Y.; Zhang, Z.; Li, J.; Yang, Z. High spatial resolution botdr based on differential brillouin spectrum technique. IEEE Photonic Technol. Lett. 2016, 28, 1493–1496. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, M.; Dai, H.; Liu, L.; Zhang, J.; Jin, X.; Wang, G. Distributed optical fiber sensing with brillouin optical time domain reflectometry based on differential pulse pair. Opt. Laser Technol. 2018, 105, 89–93. [Google Scholar] [CrossRef]
- He, J.; Zhou, Z.; Ou, J. Equidistance difference optimum method to enhance measuring space of brillouin optical fiber sensor. Opt. Eng. 2013, 52, 097107. [Google Scholar] [CrossRef]
- Wang, F.; Zhan, W.; Zhang, X.; Lu, Y. Improvement of spatial resolution for botdr by iterative subdivision method. J. Lightwave Technol. 2013, 31, 3663–3667. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Fu, X.; Fu, G.; Jia, W.; Bi, W. A pluse subdivision superposition method for improving the spatial resolution in botdr system. Optik 2017, 140, 523–527. [Google Scholar] [CrossRef]
- Yu, Y.F.; Luo, L.Q.; Li, B.; Soga, K.C.; Yan, J.Z. Quadratic time-frequency transforms-based brillouin optical time-domain reflectometry. IEEE Sens. J. 2017, 17, 6622–6626. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, X.; Sun, C.; Motamedi, M.; Ansari, F. Stationary wavelet transform method for distributed detection of damage by fiber-optic sensors. J. Eng. Mech. 2013, 140, 04013004. [Google Scholar] [CrossRef]
- Hao, Y.; Ye, Q.; Pan, Z.; Cai, H.; Qu, R. Influence of laser linewidth on performance of brillouin optical time domain reflectometry. Chin. Phys. B 2013, 22, 074214. [Google Scholar] [CrossRef]
- Bai, Q.; Yan, M.; Xue, B.; Gao, Y.; Wang, D.; Wang, Y.; Zhang, M.; Zhang, H.; Jin, B. The influence of laser linewidth on the brillouin shift frequency accuracy of botdr. Appl. Sci. 2019, 9, 58. [Google Scholar] [CrossRef]
- Li, C.; Lu, Y.; Zhang, X.; Wang, F. Snr enhancement in brillouin optical time domain reflectometer using multi-wavelength coherent detection. Electron. Lett. 2012, 48, 1139–1141. [Google Scholar] [CrossRef]
- Lalam, N.; Ng, W.P.; Dai, X.; Wu, Q.; Fu, Y.Q. Performance improvement of botdr system using wavelength diversity technique. In Proceedings of the 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 24–28 April 2017. [Google Scholar] [CrossRef]
- Lalam, N.; Ng, W.P.; Dai, X.; Wu, Q.; Fu, Y.Q. Performance analysis of brillouin optical time domain reflectometry (botdr) employing wavelength diversity and passive depolarizer techniques. Meas. Sci. Technol. 2018, 29, 025101. [Google Scholar] [CrossRef]
- Lalam, N.; Ng, W.P.; Dai, X.; Wu, Q.; Fu, Y.Q. Performance improvement of brillouin ring laser based botdr system employing a wavelength diversity technique. J. Lightwave Technol. 2018, 36, 1084–1090. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zhao, Y. Channel capacity of wavelength division multiplexing-based brillouin optical time domain sensors. IEEE Photonics J. 2018, 10, 1–15. [Google Scholar] [CrossRef]
- Hao, Y.; Ye, Q.; Pan, Z.; Cai, H.; Qu, R.; Yang, Z. Effects of modulated pulse format on spontaneous brillouin scattering spectrum and botdr sensing system. Opt. Laser Technol. 2013, 46, 37–41. [Google Scholar] [CrossRef]
- Hao, Y.; Ye, Q.; Pan, Z.; Cai, H.; Qu, R. Analysis of spontaneous brillouin scattering spectrum for different modulated pulse shape. Optik 2013, 124, 2417–2420. [Google Scholar] [CrossRef]
- Lu, Y.; Yao, Y.; Zhao, X.; Wang, F.; Zhang, X. Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of botdr. Opt. Commun. 2013, 297, 48–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Ying, Z.; Zhang, X. Performance improvement for long-range botdr sensing system based on high extinction ratio modulator. Electron. Lett. 2014, 50, 1014–1016. [Google Scholar] [CrossRef]
- Bai, Q.; Xue, B.; Gu, H.; Wang, D.; Wang, Y.; Zhang, M.; Jin, B.; Wang, Y. Enhancing the snr of botdr by gain-switched modulation. IEEE Photonic Technol. Lett. 2019, 31, 283–286. [Google Scholar] [CrossRef]
- Wan, S.; Xiong, Y.; He, X. The theoretical analysis and design of coding botdr system with apd detector. IEEE Sens. J. 2014, 14, 2626–2632. [Google Scholar] [CrossRef]
- Soto, M.A.; Bolognini, G.; Pasquale, F.D. Analysis of optical pulse coding in spontaneous brillouin-based distributed temperature sensors. Opt. Express 2008, 16, 19097–19111. [Google Scholar] [CrossRef]
- Soto, M.A.; Sahu, P.K.; Bolognini, G.; Di Pasquale, F. Brillouin-based distributed temperature sensor employing pulse coding. IEEE Sens. J. 2008, 8, 225–226. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, X.; Hu, J.; Zhang, Y. Design of fast pulse coding/decoding system for botdr. In Proceedings of the 2012 Photonics Global Conference (PGC), Singapore, 13–16 December 2012. [Google Scholar]
- Hao, Y.; Ye, Q.; Pan, Z.; Cai, H.; Qu, R. Digital coherent detection research on brillouin optical time domain reflectometry with simplex pulse codes. Chin. Phys. B 2014, 23. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, H.; Zhang, X.; Wang, F. Brillouin optical time-domain reflectometry based on hadamard sequence probe pulse. In Proceedings of the 9th International Conference on Optical Communications and Networks (ICOCN 2010), Nanjing, China, 24–27 October 2010. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Yang, Z. A method for improving botdr system performance. In Proceedings of the 2012 Symposium on Photonics and Optoelectronics, Shanghai, China, 21–23 May 2012. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, C.; Cao, C.; Zhang, X. Enhancing the performance of botdr based on the combination of fft technique and complementary coding. Opt. Express 2017, 25, 3504–3513. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.-n.; Han, B.; Qin, C.; Wang, Q. High sensitive botdr demodulation method by using slow-light in fiber grating. J. Lightwave Technol. 2013, 31, 3345–3351. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Han, B.; Zhang, Y.-n.; Wang, P.; Wang, L. A novel brillouin optical time-domain reflectometer demodulating method based on a slow-light mach-zehnder interferometer. Instrum. Sci. Technnol. 2014, 42, 290–297. [Google Scholar] [CrossRef]
- Wang, F.; Li, C.; Zhao, X.; Zhang, X. Using a mach-zehnder-interference-based passive configuration to eliminate the polarization noise in brillouin optical time domain reflectometry. Appl. Opt. 2012, 51, 176–180. [Google Scholar] [CrossRef]
- Cao, Y.L.; Ye, Q.; Pan, Z.Q.; Cai, H.W.; Qu, R.H.; Fang, Z.J.; Zhao, H. Mitigation of polarization fading in botdr sensors by using optical pulses with orthogonal polarizations. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, L.; Zhang, X. Performance of brillouin optical time domain reflectometer with erbium doped fiber amplifier. Optik 2014, 125, 4864–4867. [Google Scholar] [CrossRef]
- Song, M.; Xia, Q.; Feng, K.; Lu, Y.; Yin, C. 100 km brillouin optical time-domain reflectometer based on unidirectionally pumped raman amplification. Opt. Quant. Electron. 2016, 48, 30. [Google Scholar] [CrossRef]
- Xia, L.; Hu, J.; Zhao, Q.; Chen, J.; Wu, P.; Zhang, X. A distributed brillouin temperature sensor using a single-photon detector. IEEE Sens. J. 2016, 16, 2180–2185. [Google Scholar] [CrossRef]
- Xia, H.; Shangguan, M.; Shentu, G.; Wang, C.; Qiu, J.; Zheng, M.; Xie, X.; Dou, X.; Zhang, Q.; Pan, J.-W. Brillouin optical time-domain reflectometry using up-conversion single-photon detector. Opt. Commun. 2016, 381, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, X.; An, Q.; Zhang, L. Detrimental effect elimination of laser frequency instability in brillouin optical time domain reflectometer by using self-heterodyne detection. Sensors 2017, 17, 634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Li, D.; Fu, X.H.; Bi, W.H. An improved levenberg-marquardt algorithm for extracting the features of brillouin scattering spectrum. Meas. Sci. Technol. 2013, 24, 015204. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Fu, X.; Xu, J. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for brillouin scattering spectra. Opt. Commun. 2016, 376, 56–66. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, M.; Zhang, J.; Liu, Y.; Jin, B.; Bai, Q.; Li, Z. Temperature measurement accuracy enhancement in the brillouin optical time domain reflectometry system using the sideband of brillouin gain spectrum demodulation. Acta Phys. Sin. 2016, 65, 244203. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Z.; Li, Y. An accurate and rapid method for extracting parameters from multi-peak brillouin scattering spectra. Sens. Actuators A Phys. 2015, 232, 276–284. [Google Scholar] [CrossRef]
- Soto, M.A.; Thevenaz, L. Modeling and evaluating the performance of brillouin distributed optical fiber sensors. Opt. Express 2013, 21, 31347–31366. [Google Scholar] [CrossRef]
- Yu, Y.F.; Luo, L.Q.; Li, B.; Soga, K.; Yan, J.Z. Frequency resolution quantification of brillouin-distributed optical fiber sensors. IEEE Photonic Technol. Lett. 2016, 28, 2367–2370. [Google Scholar] [CrossRef]
- Zheng, H.; Fang, Z.; Wang, Z.; Lu, B.; Cao, Y.; Ye, Q.; Qu, R.; Cai, H. Brillouin frequency shift of fiber distributed sensors extracted from noisy signals by quadratic fitting. Sensors 2018, 18, 409. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, Y.; Zhang, X.; Wang, F.; Wang, R. Reducing trade-off between spatial resolution and frequency accuracy in botdr using cohen’s class signal processing method. IEEE Photonic Technol. Lett. 2012, 24, 1337–1339. [Google Scholar] [CrossRef]
- Huang, M.; Li, W.; Liu, Z.; Cheng, L.; Guan, B.-O. Brillouin scattering spectrum analysis based on auto-regressive spectral estimation. Photonic Sens. 2018, 8, 114–118. [Google Scholar] [CrossRef]
- Pradhan, H.S.; Sahu, P.K. Brillouin distributed strain sensor performance improvement using fourward algorithm. Optik 2016, 127, 2666–2669. [Google Scholar] [CrossRef]
- Soto, G.; Fontbona, J.; Cortez, R.; Mujica, L. An online two-stage adaptive algorithm for strain profile estimation from noisy and abruptly changing botdr data and application to underground mines. Measurement 2016, 92, 340–351. [Google Scholar] [CrossRef]
- Zhou, D.W.; Dong, Y.K.; Wang, B.Z.; Pang, C.; Ba, D.X.; Zhang, H.Y.; Lu, Z.W.; Li, H.; Bao, X.Y. Single-shot botda based on an optical chirp chain probe wave for distributed ultrafast measurement. Light Sci. Appl. 2018, 7. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhou, D.W.; Wang, B.Z.; Pang, C.; Xu, P.B.; Jiang, T.F.; Ba, D.X.; Li, H.; Dong, Y.K. Recent progress in fast distributed brillouin optical fiber sensing. Appl. Sci. 2018, 8, 1820. [Google Scholar] [CrossRef]
- Ba, D.X.; Zhou, D.W.; Wang, B.Z.; Lu, Z.W.; Fan, Z.G.; Dong, Y.K.; Li, H. Dynamic distributed brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agility modulation. IEEE Photonics J. 2017, 9, 7102908. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, B.; Zhang, D. Data processing in botdr distributed strain measurement based on pattern recognition. Optik 2010, 121, 2234–2239. [Google Scholar] [CrossRef]
- Wan, S.; He, X.; Fang, L. Distributed brillouin fiber sensing based on spectrum line fitting and wavelet packet denoising. Opt. Commun. 2012, 285, 4971–4976. [Google Scholar] [CrossRef]
- Yang, W.; Yang, Y.; Yang, M. Fast digital envelope detector based on generalized harmonic wavelet transform for botdr performance improvement. Meas. Sci. Technol. 2014, 25, 065103. [Google Scholar] [CrossRef]
- Song, M.P.; Zhao, B. Accuracy enhancement in brillouin scattering distributed temperature sensor based on hilbert transform. Opt. Commun. 2005, 250, 252–257. [Google Scholar] [CrossRef]
- Wang, X.; Huang, C.-X.; Zhou, L. Application of morlet wavelet in the extraction of brillouin scattering signal envelope. In Proceedings of the 5th International Symposium on Photoelectronic Detection and Imaging (ISPDI)—Fiber Optic Sensors and Optical Coherence Tomography, Beijing, China, 25–27 June 2013. [Google Scholar] [CrossRef]
- Wang, F.; Zhan, W.; Lu, Y.; Yan, Z.; Zhang, X. Determining the change of brillouin frequency shift by using the similarity matching method. J. Lightwave Technol. 2015, 33, 4101–4108. [Google Scholar] [CrossRef]
- Abbasnejad, M.; Alizadeh, B. Fpga-based implementation of a novel method for estimating the brillouin frequency shift in botda and botdr sensors. IEEE Sens. J. 2018, 18, 2015–2022. [Google Scholar] [CrossRef]
- Geng, J.; Staines, S.; Blake, M.; Jiang, S. Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous brillouin scattering. Appl. Opt. 2007, 46, 5928–5932. [Google Scholar] [CrossRef] [PubMed]
- Tu, G.; Zhang, X.; Zhang, Y.; Ying, Z.; Lv, L. Strain variation measurement with short-time fourier transform-based brillouin optical time-domain reflectometry sensing system. Electron. Lett. 2014, 50, 1624–1625. [Google Scholar] [CrossRef]
- Li, B.; Luo, L.; Yu, Y.; Soga, K.; Yan, J. Dynamic strain measurement using small gain stimulated brillouin scattering in stft-botdr. IEEE Sens. J. 2017, 17, 2718–2724. [Google Scholar] [CrossRef]
- Masoudi, A.; Belal, M.; Newson, T.P. Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous brillouin scattering. Opt. Lett. 2013, 38, 3312–3315. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, K.; Kanda, Y.; Fujii, A.; Murai, H. High-speed distributed strain measurement using brillouin optical time-domain reflectometry based-on self-delayed heterodyne detection. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015. [Google Scholar] [CrossRef]
- Peled, Y.; Motil, A.; Yaron, L.; Tur, M. Slope-assisted fast distributed sensing in optical fibers with arbitrary brillouin profile. Opt. Express 2011, 19, 19845–19854. [Google Scholar] [CrossRef]
- Zhou, D.; Dong, Y.; Wang, B.; Jiang, T.; Ba, D.; Xu, P.; Zhang, H.; Lu, Z.; Li, H. Slope-assisted botda based on vector sbs and frequency-agile technique for wide-strain-range dynamic measurements. Opt. Express 2017, 25, 1889–1902. [Google Scholar] [CrossRef] [PubMed]
- Maraval, D.; Gabet, R.; Jaouen, Y.; Lamour, V. Dynamic optical fiber sensing with brillouin optical time domain reflectometry: Application to pipeline vibration monitoring. J. Lightwave Technol. 2017, 35, 3296–3302. [Google Scholar] [CrossRef]
- Shangguan, M.; Wang, C.; Xia, H.; Shentu, G.; Dou, X.; Zhang, Q.; Pan, J.-w. Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique. Opt. Commun. 2017, 398, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Alahbabi, M.; Cho, Y.T.; Newson, T.P. Comparison of the methods for discriminating temperature and strain in spontaneous brillouin-based distributed sensors. Opt. Lett. 2004, 29, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Ba, D.; Chen, C.; Fu, C.; Zhang, D.; Lu, Z.; Fan, Z.; Dong, Y. A high-performance and temperature-insensitive shape sensor based on dpp-botda. IEEE Photonics J. 2018, 10, 7100810. [Google Scholar] [CrossRef]
- Parker, T.R.; Farhadiroushan, M.; Handerek, V.A.; Roger, A.J. A fully distributed simultaneous strain and temperature sensor using spontaneous brillouin backscatter. IEEE Photonic Technol. Lett. 1997, 9, 979–981. [Google Scholar] [CrossRef]
- Alahbabi, M.N.; Cho, Y.T.; Newson, T.P. Simultaneous temperature and strain measurement with combined spontaneous raman and brillouin scattering. Opt. Lett. 2005, 30, 1276–1278. [Google Scholar] [CrossRef]
- Bolognini, G.; Soto, M.A.; Di Pasquale, F. Fiber-optic distributed sensor based on hybrid raman and brillouin scattering employing multiwavelength fabry-perot lasers. IEEE Photonic Technol. Lett. 2009, 21, 1523–1525. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, C.; Mu, H.; Sun, D. Edge technique for direct detection of strain and temperature based on optical time domain reflectometry. Appl. Opt. 2009, 48, 189–197. [Google Scholar] [CrossRef]
- Soto, M.A.; Bolognini, G.; Di Pasquale, F. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous brillouin scattering and optical pulse coding. IEEE Photonic Technol. Lett. 2009, 21, 450–452. [Google Scholar] [CrossRef]
- Taki, M.; Signorini, A.; Oton, C.J.; Nannipieri, T.; Di Pasquale, F. Hybrid raman/brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding. Opt. Lett. 2013, 38, 4162–4165. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kwon, H.; Yang, I.; Lee, S.; Kim, J.; Kang, S. Performance of a distributed simultaneous strain and temperature sensor based on a fabry-perot laser diode and a dual-stage fbg optical demultiplexer. Sensors 2013, 13, 15452–15464. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Luo, L.; Li, B.; Guo, L.; Yan, J.; Soga, K. Double peak-induced distance error in short-time-fourier-transform-brillouin optical time domain reflectometers event detection and the recovery method. Appl. Opt. 2015, 54, E196–E202. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Pamukcu, S.; Xiao, W.; Guintrand, C.; Toulouse, J.; Pervizpour, M. Distributed fiber sensor based on modulated pulse base reflection and brillouin gain spectrum analysis. Appl. Opt. 2009, 48, 5823–5828. [Google Scholar] [CrossRef] [PubMed]
- Breteler, R.F.K.; van der Tol, J.J.G.M.; Felicetti, M.; Sasbrink, B.; Smit, M.K. Photonic integrated brillouin optical time domain reflection readout unit. Opt. Eng. 2011, 50, 071111. [Google Scholar] [CrossRef]
- Lida, D.; Ito, F. Cost-effective bandwidth-reduced brillouin optical time domain reflectometry using a reference brillouin scattering beam. Appl. Opt. 2009, 48, 4302–4309. [Google Scholar] [CrossRef]
- Hao, Y.; Ye, Q.; Pan, Z.; Yang, F.; Cai, H.; Qu, R.; Zhang, Q.; Yang, Z. Design of wide-band frequency shift technology by using compact brillouin fiber laser for brillouin optical time domain reflectometry sensing system. IEEE Photonics J. 2012, 4, 1686–1692. [Google Scholar] [CrossRef]
- Bai, Q.; Zheng, X.; Wang, D.; Wang, Y.; Liu, X.; Zhang, M.J.; Zhang, H.J.; Jin, B.Q. A logarithmic detection scheme in botdr with low-bandwidth requests. IEEE Access 2018, 6, 74828–74835. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Wang, X.; Chen, H. Distributed fiber strain and vibration sensor based on brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry. Opt. Lett. 2013, 38, 2437–2439. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, T.; Zhou, H.; Huang, S.; Liu, M.; Huang, W. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses. Opt. Express 2016, 24, 27482–27493. [Google Scholar] [CrossRef]
- Husdi, I.R.; Nakamura, K.; Ueha, S. Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry. Meas. Sci. Technol. 2004, 15, 1553–1559. [Google Scholar] [CrossRef]
- Mizuno, Y.; Nakamura, K. Experimental study of brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength. Appl. Phys. Lett. 2010, 97, 021103. [Google Scholar] [CrossRef]
- Mizuno, Y.; Nakamura, K. Potential of brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing. Opt. Lett. 2010, 35, 3985–3987. [Google Scholar] [CrossRef]
- Mizuno, Y.; Ishigure, T.; Nakamura, K. Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter. IEEE Photonic Technol. Lett. 2011, 23, 1863–1865. [Google Scholar] [CrossRef]
- Hayashi, N.; Mizuno, Y.; Nakamura, K. Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber. Opt. Express 2012, 20, 21101–21106. [Google Scholar] [CrossRef]
- Minakawa, K.; Mizuno, Y.; Nakamura, K. Cross effect of strain and temperature on brillouin frequency shift in polymer optical fibers. J. Lightwave Technol. 2017, 35, 2481–2486. [Google Scholar] [CrossRef]
- Hayashi, N.; Mizuno, Y.; Koyama, D.; Nakamura, K. Dependence of brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement. Appl. Phys. Express 2012, 5, 032502. [Google Scholar] [CrossRef]
- Hayashi, N.; Mizuno, Y.; Koyama, D.; Nakamura, K. Measurement of acoustic velocity in poly(methyl methacrylate)-based polymer optical fiber for brillouin frequency shift estimation. Appl. Phys. Express 2011, 4, 102501. [Google Scholar] [CrossRef]
- Minakawa, K.; Koike, K.; Hayashi, N.; Koike, Y.; Mizuno, Y.; Nakamura, K. Dependence of brillouin frequency shift on water absorption ratio in polymer optical fibers. J. Appl. Phys. 2016, 119, 223102. [Google Scholar] [CrossRef]
- Minakawa, K.; Hayashi, N.; Mizuno, Y.; Nakamura, K. Potential applicability of brillouin scattering in partially chlorinated polymer optical fibers to high-precision temperature sensing. Appl. Phys. Express 2013, 6, 052501. [Google Scholar] [CrossRef]
- Kawa, T.; Numata, G.; Lee, H.; Hayashi, N.; Mizuno, Y.; Nakamura, K. Single-end-access strain and temperature sensing based on multimodal interference in polymer optical fibers. IEICE Electron. Express 2017, 14, 1–9. [Google Scholar] [CrossRef]
- Zou, L.; Bao, X.; Chen, L. Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core. Opt. Lett. 2003, 28, 2022–2024. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Bao, X.; Afshar, S.; Chen, L. Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber. Opt. Lett. 2004, 29, 1485–1487. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; He, Z.; Hotate, K. Experimental investigation on brillouin scattering property in highly nonlinear photonic crystal fiber with hybrid core. Opt. Express 2012, 20, 11083–11090. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yuan, Z.; Liu, Z.; Gao, W.; Dong, Y. Simultaneous measurement of strain and temperature using a polarization-maintaining photonic crystal fiber with stimulated brillouin scattering. Appl. Phys. Express 2017, 10, 012501. [Google Scholar] [CrossRef]
- Song, K.Y.; Kim, Y.H. Characterization of stimulated brillouin scattering in a few-mode fiber. Opt. Lett. 2013, 38, 4841–4844. [Google Scholar] [CrossRef] [PubMed]
- Song, K.Y.; Kim, Y.H.; Kim, B.Y. Intermodal stimulated brillouin scattering in two-mode fibers. Opt. Lett. 2013, 38, 1805–1807. [Google Scholar] [CrossRef]
- Li, A.; Wang, Y.F.; Hu, Q.; Che, D.; Chen, X.; Shieh, W. Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable brillouin otdr. Opt. Lett. 2014, 39, 6418–6421. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wang, Y.; Fang, J.; Li, M.J.; Kim, B.Y.; Shieh, W. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination. Opt. Lett. 2015, 40, 1488–1491. [Google Scholar] [CrossRef]
- Weng, Y.; Ip, E.; Pan, Z.; Wang, T. Single-end simultaneous temperature and strain sensing techniques based on brillouin optical time domain reflectometry in few-mode fibers. Opt. Express 2015, 23, 9024–9039. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, Z.; Ke, C.; Liu, D. Simultaneous temperature and strain sensing utilizing brillouin frequency shifts contributed by multiple acoustic modes. In Proceedings of the 29th IEEE Photonics Conference (IPC), Waikoloa, HI, USA, 2–6 October 2016. [Google Scholar]
- Wu, H.; Wang, R.; Liu, D.; Fu, S.; Zhao, C.; Wei, H.; Tong, W.; Shum, P.P.; Tang, M. Few-mode fiber based distributed curvature sensor through quasi-single-mode brillouin frequency shift. Opt. Lett. 2016, 41, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bao, X.Y. Brillouin spectrum in leaf and simultaneous temperature and strain measurement. J. Lightwave Technol. 2012, 30, 1053–1059. [Google Scholar] [CrossRef]
- Lu, Y.; Qin, Z.; Lu, P.; Zhou, D.; Chen, L.; Bao, X. Distributed strain and temperature measurement by brillouin beat spectrum. IEEE Photonic Technol. Lett. 2013, 25, 1050–1053. [Google Scholar] [CrossRef]
- Ding, M.J.; Hayashi, N.; Mizuno, Y.; Nakamura, K. Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations. Appl. Phys. Lett. 2013, 102, 191906. [Google Scholar] [CrossRef]
- Ding, M.J.; Mizuno, Y.; Nakamura, K. Discriminative strain and temperature measurement using brillouin scattering and fluorescence in erbium-doped optical fiber. Opt. Express 2014, 22, 24706–24712. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Dang, Y.; Tang, M.; Duan, L.; Wang, M.; Wu, H.; Fu, S.; Tong, W.; Shum, P.P.; Liu, D. Spatial-division multiplexed hybrid raman and brillouin optical time-domain reflectometry based on multi-core fiber. Opt. Express 2016, 24, 25111–25118. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, M.A.S.; Wang, M.; Milione, G.; Li, M.J.; Li, S.P.; Huang, Y.K.; Wang, T.; Chen, K.P. Discrimination of temperature and strain in brillouin optical time domain analysis using a multicore optical fiber. Sensors 2018, 18, 1176. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Parmigiani, F.; Yu, Y.; Li, B.; Soga, K.; Yan, J. Frequency uncertainty improvement in a stft-botdr using highly nonlinear optical fibers. Opt. Express 2018, 26, 3870–3881. [Google Scholar] [CrossRef]
- Lanticq, V.; Bourgeois, E.; Magnien, P.; Dieleman, L.; Vinceslas, G.; Sang, A.; Delepine-Lesoille, S. Soil-embedded optical fiber sensing cable interrogated by brillouin optical time-domain reflectometry (b-otdr) and optical frequency-domain reflectometry (ofdr) for embedded cavity detection and sinkhole warning system. Meas. Sci. Technol. 2009, 20, 034018. [Google Scholar] [CrossRef]
- Klar, A.; Linker, R. Feasibility study of automated detection of tunnel excavation by brillouin optical time domain reflectometry. Tunn. Undergr. Space Technol. 2010, 25, 575–586. [Google Scholar] [CrossRef]
- Mohamad, H.; Soga, K.; Bennett, P.J.; Mair, R.J.; Lim, C.S. Monitoring twin tunnel interaction using distributed optical fiber strain measurements. J. Geotech. Geoenviron. Eng. 2012, 138, 957–967. [Google Scholar] [CrossRef]
- Webb, G.T.; Vardanega, P.J.; Hoult, N.A.; Fidler, P.R.A.; Bennett, P.J.; Middleton, C.R. Analysis of fiber-optic strain-monitoring data from a prestressed concrete bridge. J. Bridge Eng. 2017, 22, 05017002. [Google Scholar] [CrossRef]
- He, J.; Zhou, Z.; Jinping, O. Optic fiber sensor-based smart bridge cable with functionality of self-sensing. Mech. Syst. Signal. Process. 2013, 35, 84–94. [Google Scholar] [CrossRef]
- Liu, W.Q.; Wang, H.P.; Zhou, Z.; Li, S.Y.; Ni, Y.B.; Wang, G. Optical fiber based sensing system design for the health monitoring of multi-layered pavement structure. In Proceedings of the International Conference on Optical Instruments and Technology (OIT)-Optical Sensors and Applications, Beijing, China, 6–9 November 2011. [Google Scholar]
- Yan, S.Z.; Chyan, L.S. Performance enhancement of botdr fiber optic sensor for oil and gas pipeline monitoring. Opt. Fiber Technol. 2010, 16, 100–109. [Google Scholar] [CrossRef]
- Mirzaei, A.; Bahrampour, A.R.; Taraz, M.; Bahrampour, A.; Bahrampour, M.J.; Ahmadi Foroushani, S.M. Transient response of buried oil pipelines fiber optic leak detector based on the distributed temperature measurement. Int. J. Heat Mass Transf. 2013, 65, 110–122. [Google Scholar] [CrossRef]
- Madabhushi, S.S.C.; Elshafie, M.Z.E.B.; Haigh, S.K. Accuracy of distributed optical fiber temperature sensing for use in leak detection of subsea pipelines. J. Pipeline Syst. Eng. Pract. 2015, 6, 04014014. [Google Scholar] [CrossRef]
- Feng, X.; Wu, W.; Li, X.; Zhang, X.; Zhou, J. Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors. Smart Struct. Syst. 2015, 15, 245–258. [Google Scholar] [CrossRef]
- Bai, Q.; Yan, W.; Wang, D.; Wang, Y.; Liu, X.; Jin, B.Q. Multi-parameter cbm pipeline safety monitoring system based on optical fiber sensing. In Proceedings of the International Symposium on Optoelectronic Technology and Application (OTA), Beijing, China, 22–24 May 2018. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, B.; Wei, G.Q.; Chen, S.E.; Zhang, D. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles. Smart Mater. Struct. 2012, 21, 115011. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, B.; Chen, S.-E.; Zhu, H.; Zhang, D.; Lu, Y. Feasibility study on corrosion monitoring of a concrete column with central rebar using botdr. Smart Struct. Syst. 2014, 13, 41–53. [Google Scholar] [CrossRef]
- Feng, S.J.; Lu, S.F.; Shi, Z.M. Field investigations of two super-long steel pipe piles in offshore areas. Mar. Georesour. Geotechnol. 2015, 34, 559–570. [Google Scholar] [CrossRef]
- Nan, S.; Gao, Q. Application of distributed optical fiber sensor technology based on botdr in similar model test of backfill mining. In Proceedings of the 2nd International Conference on Mining Engineering and Metallurgical Technology, Macau, China, 29–30 October 2011. [Google Scholar] [CrossRef]
- Wang, S.; Luan, L. Analysis on the security monitoring and detection of mine roof collapse based on botdr technology. In Proceedings of the 2nd International Conference on Soft Computing in Information Communication Technology (SCICT), Taipei, Taiwan, 31 May–1 June 2014. [Google Scholar]
- Moffat, R.; Sotomayor, J.; Beltrán, J.F. Estimating tunnel wall displacements using a simple sensor based on a brillouin optical time domain reflectometer apparatus. Int. J. Rock Mech. Min. Sci. 2015, 75, 233–243. [Google Scholar] [CrossRef]
- Wang, B.-J.; Li, K.; Shi, B.; Wei, G.-Q. Test on application of distributed fiber optic sensing technique into soil slope monitoring. Landslides 2009, 6, 61–68. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, H.; Gao, Y.; Li, X. Real-time monitoring and early warning of landslides at relocated wushan town, the three gorges reservoir, china. Landslides 2010, 7, 339–349. [Google Scholar] [CrossRef]
- Gu, K.; Shi, B.; Liu, C.; Jiang, H.; Li, T.; Wu, J. Investigation of land subsidence with the combination of distributed fiber optics sensing techniques and microstructure analysis of soils. Eng. Geol. 2018, 240, 34–47. [Google Scholar] [CrossRef]
- Klar, A.; Dromy, I.; Linker, R. Monitoring tunneling induced ground displacements using distributed fiber-optic sensing. Tunn. Undergr. Space Technol. 2014, 40, 141–150. [Google Scholar] [CrossRef]
- Luo, J.; Hao, Y.; Ye, Q.; Hao, Y.; Li, L. Development of optical fiber sensors based on brillouin scattering and fbg for on-line monitoring in overhead transmission lines. J. Lightwave Technol. 2013, 31, 1559–1565. [Google Scholar] [CrossRef]
- Lv, A.Q.; Li, Y.Q.; Li, J. Research on strain and temperature measurement of opgw based on botdr. In Proceedings of the International Conference on Optical Instruments and Technology (OIT)—Optical Sensors and Applications, Beijing, China, 17–19 November 2013. [Google Scholar] [CrossRef]
- Lu, L.D.; Liang, Y.; Li, B.L.; Guo, J.H.; Zhang, H.; Zhang, X.P. Health monitoring of electric power communication line using a distributed optical fiber sensor. In Proceedings of the Conference on Advanced Sensor Systems and Applications VI, Beijing, China, 9–11 October 2014. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Xu, Z.; Yang, Z.; Lü, A. On-line monitoring system of 110kv submarine cable based on botdr. Sensor Actuators A Phys. 2014, 216, 28–35. [Google Scholar] [CrossRef]
- Hao, Y.; Cao, Y.; Ye, Q.; Cai, H.; Qu, R. On-line temperature monitoring in power transmission lines based on brillouin optical time domain reflectometry. Optik 2015, 126, 2180–2183. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, M.; He, J.; Chen, G.; Ou, J. Ice structure monitoring with an optical fiber sensing system. Cold Reg. Sci. Technol. 2010, 61, 1–5. [Google Scholar] [CrossRef]
- Gao, L.; Shi, B.; Zhu, Y.; Wang, K.; Sun, Y.; Tang, C. A distributed soil temperature measurement system with high spatial resolution based on botdr. Opt. Appl. 2011, 41, 607–616. [Google Scholar]
- Luo, L.; Li, B.; Yu, Y.; Xu, X.; Soga, K.; Yan, J. Time and frequency localized pulse shape for resolution enhancement in stft-botdr. J. Sens. 2016, 2016, 3204130. [Google Scholar] [CrossRef]
- Ruiz-Lombera, R.; Fuentes, A.; Rodriguez-Cobo, L.; Miguel Lopez-Higuera, J.; Mirapeix, J. Simultaneous temperature and strain discrimination in a conventional botda via artificial neural networks. J. Lightwave Technol. 2018, 36, 2114–2121. [Google Scholar] [CrossRef]
- Azad, A.K.; Wang, L.; Guo, N.; Lu, C.; Tam, H.Y. Temperature sensing in botda system by using artificial neural network. Electron. Lett. 2015, 51, 1578–1579. [Google Scholar] [CrossRef]
- Azad, A.K.; Wang, L.; Guo, N.; Tam, H.Y.; Lu, C. Signal processing using artificial neural network for botda sensor system. Opt. Express 2016, 24, 6769–6782. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Guo, N.; Shu, C.; Lu, C. Support vector machine assisted botda utilizing combined brillouin gain and phase information for enhanced sensing accuracy. Opt. Express 2017, 25, 31210–31220. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Guo, N.; Shu, C.; Lu, C. Brillouin optical time-domain analyzer assisted by support vector machine for ultrafast temperature extraction. J. Lightwave Technol. 2017, 35, 4159–4167. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Zhao, Z.; Shu, C.; Lu, C. Support vector machine based differential pulse-width pair brillouin optical time domain analyzer. IEEE Photonics J. 2018, 10, 6802911. [Google Scholar] [CrossRef]
- Wang, B.; Guo, N.; Wang, L.; Yu, C.; Lu, C. Denoising and robust temperature extraction for botda systems based on denoising autoencoder and dnn. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.; Zhu, R.; Xue, N.; Jiang, J.; Lu, C.; Zhang, B.; Yang, L.; Atubga, D.; Rao, Y. Ultra-long-distance hybrid botda/phi-otdr. Sensors 2018, 18, 976. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, J.; Zhang, Y. A hybrid single-end-access botda and cotdr sensing system using heterodyne detection. J. Lightwave Technol. 2013, 31, 1954–1959. [Google Scholar] [CrossRef]
Algorithm | Highlights Technique | BFS Error/MHz | Computational Effort/s | Fitting Degree | Features |
---|---|---|---|---|---|
FEA-LM | Finite element analysis | 0.9135 | 0.5274 | 0.9402 | Robust for initial values |
AIW-CPSO | PSO + Chaos optimization | 0.5602 | 0.6665 | 0.9956 | Better fitting degree Higher accuracy |
BFS Standard Deviation: σ | Parameters | Reference |
---|---|---|
fstep: frequency step of data points SNRA: signal-to-noise ratio in amplitude ΔvB: the FWHM of BGS | [79] | |
: Q-factor of BGS | [80] | |
, : frequency range of data points 3q/ρ ~ 2 | [81] |
Functionality | Algorithm | Research Group | Year | Reference |
---|---|---|---|---|
Improved LM | FEA-LM | Yanshan University, China | 2013 | [75] |
AIW-CPSO | Yanshan University, China | 2016 | [76] | |
Multi-peak fitting | North China Electric Power University, China | 2015 | [78] | |
Quadratic least-squares fitting | Parabolic fitting | EPFL Swiss Federal Institute of Technology, Switzerland | 2013 | [79] |
Second order polynomial fitting | University of Cambridge, UK | 2016 | [80] | |
Quadratic least-squares fitting | Iterative fitting | Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences | 2018 | [81] |
QTFA | CWD | Nanjing University, China | 2012 | [82] |
AR spectral estimation | Burg | Jinan University, China | 2018 | [83] |
LPR-BOTDR | FourWaRD | Indian Institute of Technology Bhubaneswar, India | 2016 | [84] |
BOTDR data post-processing | Online two-stage adaptive algorithm | Universidad de Chile, Chile | 2016 | [85] |
Functionality | Algorithm | Research Group | Year | Reference |
---|---|---|---|---|
Mass data handling | Pattern recognition | Nanjing University of Science and Technology, China | 2010 | [89] |
BGS fitting | Wavelet packet denoising | Nanchang Hangkong University, China | 2012 | [90] |
Digital envelope detector | GHWT | Beihang University, China | 2014 | [91] |
Seeking BFS change | SMM | Nanjing University, China | 2015 | [94] |
FPGA-Based BFS estimator | Moving average filter Cross-correlation denoising | University of Tehran, Iran | 2018 | [95] |
Research Group 1 | Sensing Range (km) | Spatial Resolution (m) | Measurement Accuracy | SNRI or DR Yes/No (dB) | Measurement Speed Yes/No (s/Hz) | Highlights | Year | Reference |
---|---|---|---|---|---|---|---|---|
Beihang University, China | 0.27 | 1 | 4 MHz | N | N | Self-heterodyne detection | 2009 | [115] |
2 | 0.1 | 0.5 °C, 20 με | N | N | ROTDR + BOTDR | 2009 | [110] 3 | |
5.1 | 15 | N | 5.5 | 15.2 s | GHWT-DED | 2014 | [91] 2 | |
Cementys, Universit’e Paris Saclay, France | 0.1 | 1 | ±40 με | N | 7.6 Hz | Slope-assisted BOTDR | 2017 | [103] |
China University of Geosciences, China | 3 | 0.2 | N | N | N | Differential pulse technique | 2018 | [40] |
Chongqing University, China | 10 | 0.8 | N | N | N | BOTDR + ϕ-OTDR | 2016 | [121] |
Indian Institute of Technology Bhubaneswar, India | 70 | 10 | 125 με | 49.1 | N | FourWaRD algorithm | 2016 | [84] 3 |
Ibaraki University, Japan | 0.016 | 0.2 | ±1 MHz | N | N | DP-BOTDR | 2007 | [34,35] |
Jinan University, China | 2 | 25 | 0.5 MHz | N | N | AR Burg algorithm | 2018 | [83] 4 |
Kyungpook National University, Korea | 2 | 1 | 0.6 °C, 50 με | 4 | N | FPL-based OTDR + BOTDR | 2013 | [113] |
Nanjing University, China | 37 | N | N | N | N | Hadamard coding | 2010 | [63] |
24 | 3 | 1 MHz | N | N | MZI-based depolarizer | 2012 | [68] | |
0.36 | 1.6 | ±1 MHz | N | N | CWD algorithm | 2012 | [82] | |
23.6 | 10 | 0.8 MHz | 4.2 | N | WDT | 2012 | [48] | |
1 | 0.1 | 1.1 MHz | N | N | Iterative subdivision | 2013 | [42] | |
50 | 1.5 | 1.8 MHz | N | N | Iterative subdivision | 2013 | [42] | |
23.9 | 5 | 2.1 MHz | N | N | High-ER modulator | 2013 | [55] | |
4 | 10 | 0.2 MHz | N | N | BOTDR + POTDR | 2013 | [120] | |
48.5 | 25 | 0.8 MHz | N | N | High-ER modulator | 2014 | [56] | |
0.27 | 4 | 45 με | N | 16.7 Hz | STFT | 2014 | [97] | |
36 | 10 | 0.92 MHz | N | N | SMM | 2015 | [94] 5 | |
42.5 | 1.2 | 1.7 °C | 8.5 | N | SPD + RASR | 2016 | [72] | |
10 | 2 | 0.37 MHz | N | 6 s | Golay coding and FFT | 2017 | [65] | |
Nanjing University of Aeronautics and Astronautics, China | 23 | 5 | 0.2 MHz | 8.4 | N | WDT | 2018 | [52] |
North China Electric Power University, China | 2 | N | N | 8 | N | Complementary coding | 2012 | [64] |
North China Electric Power University, China Northumbria University, UK | 9.5 | 13 | 1.2 °C | N | N | Self-heterodyne detection | 2017 | [74] |
10 | 10 | 1.52 MHz | 3.92 | N | WDT | 2017 | [49] | |
Northumbria University, UK NP Photonics, USA | 25 | 5 | 0.18 MHz | 4.85 | N | WDT + MZI-based depolarizer | 2018 | [50] |
50 | 5 | 0.52 MHz | 5.1 | N | WDT + MZI-based depolarizer + BFL | 2018 | [51] | |
12.5 | 20 | N | N | 1 s | FFT + BFL | 2007 | [96] | |
NTT Corporation, Japan | 3 | 100 | 0.857 MHz | N | N | Low bandwidth | 2009 | [117] |
OKI Electric Industry, Japan | 1 | 1.5 | N | N | 25 Hz | SDH-BOTDR | 2015 | [100] |
Osaka University, Japan | 0.04 | 0.1 | N | N | N | S-BOTDR, | 2014 | [36] |
Scuola Superiore Sant’Anna, Italy | 21 | 40 | 3.1 °C | 7.1 | N | Simplex coding | 2008 | [60] |
Scuola Superiore Sant’Anna, Italy Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China | 30 | 42 | 5 °C | 7.1 | N | Simplex coding | 2008 | [59] |
25 | 35 | 1.2 °C, 100 με | N | N | FPL + ROTDR + BOTDR | 2009 | [109] | |
53 | 32 | 8.8 °C, 220 με | 7.4 | N | BOTDR + Simplex coding | 2009 | [111] | |
20 | 10 | ±2 MHz | N | N | BFL | 2012 | [118] | |
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China | 5 | 8 | N | 5 | N | Modulated pulse format | 2013 | [54] |
9.5 | 20 | N | 4.8 | N | Modulated pulse format | 2013 | [53] | |
10 | 10 | 1.5 MHz | N | N | Narrow Laser Linewidth | 2013 | [46] | |
1 | 4 | 9.706 MHz | 3.5 | N | Simplex coding | 2014 | [62] | |
30 | 10 | N | N | N | MZI-based depolarizer | 2014 | [69] | |
Shibaura Institute of Technology, Japan | 0.38 | 0.2 | N | N | N | PSP-BOTDR | 2016 | [37] |
0.354 | 0.2 | 1.08 MHz | N | N | PSP-BOTDR | 2017 | [33] | |
0.35 | 0.2 | 3.2 MHz | N | N | DCS-BOTDR | 2018 | [38] | |
South China University of Technology, China | 7.8 | 0.4 | 4.1 MHz | N | N | Differential pulse technique | 2016 | [39] |
Taiyuan University of Technology, China | 10.2 | 5 | 0.595 MHz | 4.35 | N | Side-band detection | 2016 | [77] |
10 | 1 | 0.67 MHz | N | N | Logarithmic detection | 2018 | [119] | |
10.2 | 1 | 0.805 MHz | N | N | Optimized Laser Linewidth | 2019 | [47] | |
10 | 1 | 0.78 MHz | N | N | High-ER modulator | 2019 | [57] | |
Cambridge University, UK | 1.5 | 3.4 | N | N | N | Zero-padded STFT | 2015 | [114] |
0.935 | 4 | N | N | 60 Hz | Small-gain SBS | 2017 | [98] | |
University of Science and Technology of China, China | 9 | 2 | 1.2 °C | N | 15 s | UCSPD | 2016 | [73] |
1.5 | 0.6 | ± 30 με | N | 30 Hz | UCSPD + DE-BOTDR | 2017 | [104] | |
University of Southampton, UK | 2 | 1.3 | ±50 με | N | 2 Hz | MZI-based D-BOTDR, DCM demodulation | 2013 | [99] |
Yancheng Institute of Technology, China | 80 | 10 | 0.5 °C | N | NA | Backward pumped EDFA | 2014 | [70] |
Yanshan University, China | N | 0.1 | N | N | N | Pulse subdivision superposition | 2017 | [43] |
Zhejiang University | 100 | 40 | ±3 °C | N | N | Unidirectionally pumped Raman amplifier | 2016 | [71] |
Fiber Parameters | Values | Potential Application |
---|---|---|
BFS [123,124] | ~2.83 GHz (WL = 1550 nm) | 1. Potential use for strain-insensitive high-accuracy temperature sensing 2. For large-strain sensing |
Temperature coefficient [124] | −4.09 MHz/°C | |
Strain coefficient [124] | −121.8 MHz | |
Brillouin linewidth [124] | 105 MHz | |
Threshold power [123,125] | 24 W (CD = 120 μm, L = 100 m) 53.3 W (CD = 62.5 μm, L = 5 m) | |
Numerical aperture [124] | 0.185 | |
Refractive index [124] | ~1.35 | |
Transmission Loss [127] | ~250 dB/km (WL = 1550 nm) | |
Strain-coefficient dependence on temperature [127] | 1.5 MHz/(%·°C) (strain: 0–1.2%) | |
−0.3 MHz/(%·°C) (strain: 4.0–9.0%) | ||
Temperature-coefficient dependence on strain [127] | 1.5 MHz/(°C %) (strain: 0–1.2%) | |
−0.3 MHz/(°C·%) (strain: 4.0–9.0%) | ||
Independent (strain: >13%) |
Characteristics [128,129] | Parameters [128,129] | Potential Application |
---|---|---|
Core diameters | 980 μm | 1. Solving cross-sensitivity of BOTDR [128]. 2. Humidity detection [130] |
Numerical aperture | 0.5 | |
Refractive index | ~1.49 | |
Transmission Loss | ~150 dB/km (WL = 650 nm) | |
BFS | ~13 GHz (WL = 650 nm) | |
Temperature coefficients | −17 MHz/°C (WL = 650 nm) | |
Strain coefficients | No linear relationship with strain |
Fiber Parameters | Values | Potential Application |
---|---|---|
Core diameter | 120/750 μm | Potential use for high-precision temperature sensing |
Core refractive index | 1.52 | |
BFS | ~4.43 GHz (Wavelength = 1550 nm) ~10.57 GHz (Wavelength = 650 nm) | |
Temperature coefficients | −6.9 MHz/°C (Wavelength = 1550 nm) | |
Fracture strain | 3% |
Cross Section | Fiber Parameters | Values | |||
---|---|---|---|---|---|
Ge-doped [133,134] | Core diameter | 2.3 μm with 0.8 μm Ge-doped center region | |||
Effective area | 5 μm2 | ||||
BFS (at 1320 nm) | Peak a: 12.054 GHz | Peak c: 13.046 GHz | |||
Temperature coefficient | Peak a: 0.96 MHz/°C | Peak c: 1.25 MHz/°C | |||
Strain coefficient | Peak a: 0.048 MHz/με | Peak c: 0.055 MHz/με | |||
Ge-doped core and a triangularly-arranged F-doped buffer [135] | Core diameter | 2.1 μm | |||
Effective area | 6.2 μm2 | ||||
BFS (at 1550 nm) | Peak (1–5): 9.735 GHz, 10.009 GHz, 10.290 GHz, 10.524 GHz, 10.856 GHz | ||||
Temperature or strain coefficient | 0.99 MHz/°C | 0.038 MHz/με | |||
PM-PCF [136] | Core diameter | Large hole: 4.5 μm | Small hole: 2.2 μm | ||
Mode field | Long axis: 3.6 μm | Short axis: 3.1 μm | |||
Temperature coefficient | 27.4 MHz/°C (−40~−15°C) | 8 MHz/°C (−15~5°C) | Independent (5~80°C) | ||
Strain coefficient | −0.154 MHz/με |
Fiber Type | Fiber Parameters | Values | Application |
---|---|---|---|
Five-mode [140] | Temperature coefficient | LP01: 1.01690 MHz/°C | Potential for simultaneous temperature and strain sensing |
LP11: 0.99099 MHz/°C | |||
Strain coefficient | LP01: 0.05924 MHz/με | ||
LP11: 0.07072MHz/με | |||
Ge-doped step-index FMF [141] | Temperature coefficient | LP01: 1.29 MHz/°C | |
LP11: 1.25 MHz/°C | |||
Strain coefficient | LP01: 58.5 kHz/με | ||
LP11: 57.6 kHz/με | |||
GI-FMF [142] 1 | Temperature coefficient | A01: 5.27 MHz/°C | |
A02: 4.81 MHz/°C | |||
A03: 4.30 MHz/°C | |||
Strain coefficient | A01: 0.237 MHz/με | ||
A02: 0.214 MHz/με | |||
A02: 0.189 MHz/με |
Fiber Type | Fiber Parameters | Values | Application |
---|---|---|---|
Large effective-area fiber (LEAF) [145] | Temperature coefficient of the BBS power | Peak 1: 2.95 × 10−3/°C | Potential for simultaneous temperature and strain sensing |
Peak 2: 2.43 × 10−3/°C | |||
Strain coefficient of the BBS power | Peak 1: −0.75× 10−4/με | ||
Peak 2: −0.57× 10−4/με | |||
Erbium-doped fiber (EDF) [146,147] | BFS | 11.42 GHz | |
Temperature coefficient | 0.87 MHz/°C | ||
Strain coefficient | 479 MHz/% | ||
Temperature coefficient of FIR | 5.6 × 10−4/°C | ||
Multi-core fiber (MCF) [149]. | BFS | Core 1: 10.73 GHz | |
Core 2: 10.85 GHz | |||
Temperature coefficient | Core 1: 0.971 MHz/°C | ||
Core 2: 0.959 MHz/°C | |||
Strain coefficient | Core 1: 0.053 MHz/με | ||
Core 2: 0.073 MHz/με |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Q.; Wang, Q.; Wang, D.; Wang, Y.; Gao, Y.; Zhang, H.; Zhang, M.; Jin, B. Recent Advances in Brillouin Optical Time Domain Reflectometry. Sensors 2019, 19, 1862. https://doi.org/10.3390/s19081862
Bai Q, Wang Q, Wang D, Wang Y, Gao Y, Zhang H, Zhang M, Jin B. Recent Advances in Brillouin Optical Time Domain Reflectometry. Sensors. 2019; 19(8):1862. https://doi.org/10.3390/s19081862
Chicago/Turabian StyleBai, Qing, Qinglin Wang, Dong Wang, Yu Wang, Yan Gao, Hongjuan Zhang, Mingjiang Zhang, and Baoquan Jin. 2019. "Recent Advances in Brillouin Optical Time Domain Reflectometry" Sensors 19, no. 8: 1862. https://doi.org/10.3390/s19081862
APA StyleBai, Q., Wang, Q., Wang, D., Wang, Y., Gao, Y., Zhang, H., Zhang, M., & Jin, B. (2019). Recent Advances in Brillouin Optical Time Domain Reflectometry. Sensors, 19(8), 1862. https://doi.org/10.3390/s19081862