A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. The DaiLAc Dataset
2.2. Processing
2.3. Feature Extraction
- -
- Mean, standard deviation, skewness and kurtosis;
- -
- The following percentiles: [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
- -
- Range: max(x) − min(x);
- -
- RMS: ;
- -
- Zero-crossing: the number of times the signal crossed the mean.
- -
- Energy: ;
- -
- Entropy: , where ;
- -
- Centroid: , where ;
- -
- Bandwidth: , where ;
- -
- Maximum frequency: .
2.4. Classification
2.5. Evaluation Method
2.6. Generalization on the mHealth Dataset
3. Results
3.1. Results for the DaLiAc Dataset
3.2. Results for the mHealth Dataset
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Healy, G.N.; Matthews, C.E.; Dunstan, D.W.; Winkler, E.A.H.; Owen, N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur. Heart J. 2011, 32, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Kangas, M.; Konttila, A.; Lindgren, P.; Winblad, I.; Jämsä, T. Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 2008, 28, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.M.; Timko, J.L.; Gallagher, C.M.; Yoneda, K.; Schreiber, A.J. Smartwatch-based activity recognition: A machine learning approach. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, USA, 24–27 February 2016; pp. 426–429. [Google Scholar]
- Sun, B.; Wang, Y.; Banda, J. Gait Characteristic Analysis and Identification Based on the iPhone’s Accelerometer and Gyrometer. Sensors 2014, 14, 17037–17054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plasqui, G.; Bonomi, A.G.; Westerterp, K.R. Daily physical activity assessment with accelerometers: New insights and validation studies. Obes. Rev. 2013, 14, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Garnotel, M.; Bastian, T.; Romero-Ugalde, H.M.; Maire, A.; Dugas, J.; Zahariev, A.; Doron, M.; Jallon, P.; Charpentier, G.; Franc, S.; et al. Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry. J. Appl. Physiol. 2017, 124, 780–790. [Google Scholar] [CrossRef]
- Awais, M.; Mellone, S.; Chiari, L. Physical activity classification meets daily life: Review on existing methodologies and open challenges. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5050–5053. [Google Scholar]
- Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M. Preprocessing Techniques for Context Recognition from Accelerometer Data. Pers. Ubiquitous Comput. 2010, 14, 645–662. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Bai, J.; Di, C.; Xiao, L.; Evenson, K.R.; LaCroix, A.Z.; Crainiceanu, C.M.; Buchner, D.M. An Activity Index for Raw Accelerometry Data and Its Comparison with Other Activity Metrics. PLoS ONE 2016, 11, e0160644. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.Y.; Bassett, D.R.J. The Technology of Accelerometry-Based Activity Monitors: Current and Future. Med. Sci. Sports Exerc. 2005, 37, S490. [Google Scholar] [CrossRef] [Green Version]
- Bao, L.; Intille, S.S. Activity Recognition from User-Annotated Acceleration Data. In Pervasive Computing; Ferscha, A., Mattern, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–17. [Google Scholar]
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett. 2019, 119, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables. arXiv 2016, arXiv:1604.08880. [Google Scholar]
- Hur, T.; Bang, J.; Huynh-The, T.; Lee, J.; Kim, J.-I.; Lee, S. Iss2Image: A Novel Signal-Encoding Technique for CNN-Based Human Activity Recognition. Sensors 2018, 18, 3910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh-The, T.; Hua, C.-H.; Kim, D.-S. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network *. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2478–2481. [Google Scholar]
- Chollet, F. Deep Learning with Python, 1st ed.; Manning Publications: Shelter Island, NY, USA, 2017. [Google Scholar]
- Zdravevski, E.; Lameski, P.; Trajkovik, V.; Kulakov, A.; Chorbev, I.; Goleva, R.; Pombo, N.; Garcia, N. Improving Activity Recognition Accuracy in Ambient Assisted Living Systems by Automated Feature Engineering. IEEE Access 2017, 5, 5262–5280. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Leutheuser, H.; Schuldhaus, D.; Eskofier, B.M. Hierarchical, Multi-Sensor Based Classification of Daily Life Activities: Comparison with State-of-the-Art Algorithms Using a Benchmark Dataset. PLoS ONE 2013, 8, e75196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banos, O.; Damas, M.; Pomares, H.; Rojas, F.; Delgado-Marquez, B.; Valenzuela, O. Human activity recognition based on a sensor weighting hierarchical classifier. Soft Comput. 2013, 17, 333–343. [Google Scholar] [CrossRef]
- Zhang, S.; Mccullagh, P.; Nugent, C.; Zheng, H. Activity Monitoring Using a Smart Phone’s Accelerometer with Hierarchical Classification. In Proceedings of the 2010 Sixth International Conference on Intelligent Environments, Kuala Lumpur, Malaysia, 19–21 July 2010; pp. 158–163. [Google Scholar]
- Banos, O.; Garcia, R.; Holgado-Terriza, J.A.; Damas, M.; Pomares, H.; Rojas, I.; Saez, A.; Villalonga, C. mHealthDroid: A Novel Framework for Agile Development of Mobile Health Applications. In Ambient Assisted Living and Daily Activities; Pecchia, L., Chen, L.L., Nugent, C., Bravo, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 91–98. [Google Scholar]
- Van Hees, V.T.; Gorzelniak, L.; León, E.C.D.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef] [Green Version]
- Banos, O.; Galvez, J.-M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition. Sensors 2014, 14, 6474–6499. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Chen, Y.; Guo, M.; Wang, Z. An improved algorithm for human activity recognition using wearable sensors. In Proceedings of the 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), Chiang Mai, Thailand, 14–16 February 2016; pp. 248–252. [Google Scholar]
- Nazábal, A.; García-Moreno, P.; Artés-Rodríguez, A.; Ghahramani, Z. Human Activity Recognition by Combining a Small Number of Classifiers. IEEE J. Biomed. Health Inform. 2016, 20, 1342–1351. [Google Scholar] [CrossRef]
- Jurca, R.; Cioara, T.; Anghel, I.; Antal, M.; Pop, C.; Moldovan, D. Activities of Daily Living Classification using Recurrent Neural Networks. In Proceedings of the 2018 17th RoEduNet Conference: Networking in Education and Research (RoEduNet), Cluj-Napoca, Romania, 6–8 September 2018; pp. 1–4. [Google Scholar]
- Jordao, A.; Torres, L.A.B.; Schwartz, W.R. Novel approaches to human activity recognition based on accelerometer data. SIVP 2018, 12, 1387–1394. [Google Scholar] [CrossRef]
- Cawley, G.C.; Talbot, N.L.C. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. J. Mach. Learn. Res. 2010, 11, 2079–2107. [Google Scholar]
- Martindale, C.F.; Sprager, S.; Eskofier, B.M. Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables. Sensors 2019, 19, 1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz Laguna, J.; Olaya, A.G.; Borrajo, D. A Dynamic Sliding Window Approach for Activity Recognition. In User Modeling, Adaption and Personalization; Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 219–230. [Google Scholar]
Authors | Year | Classifiers | Mean Accuracy Score (%) | Remark |
---|---|---|---|---|
Leutheuser et al. [20] | 2013 | SVM, AdaBoost, KNN | 89.6 | Reference paper |
Chen et al. [28] | 2016 | SVM | 93.4 | |
Nazabal et al. [29] | 2016 | HMM | 95.8 | Merged the two bicycle activities |
Zdravevski et al. [18] | 2017 | SVM | 93.4 | |
Hur et al. [15] | 2018 | CNN | 96.4 | |
Jurca et al. [30] | 2018 | LSTM | 87.2 | |
Huynh-The et al. [16] | 2019 | CNN | 95.7 | |
Proposed algorithm | 2020 | LR | 97.3 |
Task → | Base | Stand/Washing Dishes | Vacuum/Sweep | Walk/Ascending Stairs/Descending Stairs | Bike 50 Watt/ Bike 100 Watt | Overall | Execution Time | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
↓ Classifiers | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | |
SVM | 0.9911 | 0.0076 | 0.9716 | 0.0365 | 0.9397 | 0.0521 | 0.9872 | 0.0076 | 0.9495 | 0.0577 | 0.9684 | 0.0166 | 7.2 min |
Best sensor combination | ACHW | AH | ACHW | AHW | ACHW | HW | A | A | ACH | C | ACHW | AHW | |
CNN | 0.9896 | 0.0093 | 0.965 | 0.0498 | 0.9364 | 0.0607 | 0.9799 | 0.0168 | 0.9259 | 0.0577 | 0.9542 | 0.022 | 32.0 min |
Best sensor combination | ACW | ACW | AW | A | ACW | ACW | ACH | ACHW | AHW | ACH | ACW | ACW | |
KNN | 0.984 | 0.0128 | 0.9336 | 0.0742 | 0.8642 | 0.0633 | 0.9873 | 0.0085 | 0.8042 | 0.0754 | 0.9182 | 0.0233 | 4.5 min |
Best sensor combination | ACW | AW | ACHW | ACHW | ACW | ACW | AC | AC | AC | ACH | ACW | ACW | |
GB | 0.9923 | 0.0057 | 0.974 | 0.0313 | 0.9292 | 0.0487 | 0.9908 | 0.0063 | 0.9408 | 0.0546 | 0.9694 | 0.0188 | 10.7 min |
Best sensor combination | ACH | AHW | ACHW | ACHW | ACHW | AHW | ACH | ACH | ACW | CHW | ACHW | ACHW | |
LR | 0.9921 | 0.0069 | 0.9706 | 0.0354 | 0.9444 | 0.0453 | 0.9872 | 0.0099 | 0.9547 | 0.0493 | 0.973 | 0.0135 | 4.5 min |
Best sensor combination | AHW | AW | ACW | AHW | ACW | AHW | AC | A | ACHW | AW | ACHW | AW |
Sit | Lie | Stand | Wash | Vacuum | Sweep | Walk | Stairs-Up | Stairs-Down | Run | Bike 50W | Bike 100W | Jump | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sit | 430 | 0 | 17 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
lie | 1 | 455 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
stand | 2 | 0 | 442 | 8 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
wash | 0 | 0 | 2 | 924 | 7 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
vacuum | 0 | 0 | 0 | 7 | 422 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
sweep | 0 | 0 | 6 | 4 | 23 | 704 | 4 | 2 | 0 | 0 | 0 | 0 | 0 |
walk | 0 | 0 | 3 | 1 | 4 | 5 | 2010 | 11 | 6 | 1 | 0 | 0 | 0 |
stairsup | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 312 | 1 | 0 | 0 | 0 | 0 |
stairsdown | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 266 | 0 | 0 | 0 | 0 |
run | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 910 | 1 | 0 | 0 |
bike 50W | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 877 | 46 | 0 |
bike 100W | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 883 | 2 |
jump | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 243 |
precision | 0.993 | 1.00 | 0.940 | 0.976 | 0.926 | 0.953 | 0.992 | 0.954 | 0.974 | 0.999 | 0.959 | 0.950 | 0.992 |
recall | 0.956 | 0.998 | 0.976 | 0.986 | 0.930 | 0.948 | 0.985 | 0.975 | 0.974 | 0.999 | 0.950 | 0.958 | 1.000 |
f_score | 0.974 | 0.999 | 0.958 | 0.981 | 0.927 | 0.950 | 0.989 | 0.964 | 0.974 | 0.999 | 0.954 | 0.955 | 0.996 |
Accelerometer/Gyroscope | Accelerometer Only | Mean Difference | |||
---|---|---|---|---|---|
Mean | sd | Mean | sd | ||
ankle | 0.920 | 0.03 | 0.921 | 0.02 | 0.0010 |
chest | 0.926 | 0.03 | 0.901 | 0.03 | 0.0250 |
hip | 0.894 | 0.04 | 0.867 | 0.05 | 0.0270 |
wrist | 0.867 | 0.5 | 0.809 | 0.05 | 0.0580 |
ankle|chest | 0.959 | 0.02 | 0.954 | 0.02 | 0.0050 |
ankle|hip | 0.943 | 0.03 | 0.941 | 0.02 | 0.0020 |
ankle|wrist | 0.968 | 0.01 | 0.958 | 0.01 | 0.0100 |
chest|hip | 0.943 | 0.03 | 0.93 | 0.03 | 0.0130 |
chest|wrist | 0.954 | 0.02 | 0.934 | 0.03 | 0.0200 |
hip|wrist | 0.945 | 0.03 | 0.926 | 0.03 | 0.0190 |
ankle|chest|hip | 0.960 | 0.02 | 0.956 | 0.02 | 0.0040 |
ankle|chest|wrist | 0.970 | 0.02 | 0.966 | 0.02 | 0.0040 |
ankle|hip|wrist | 0.968 | 0.01 | 0.964 | 0.01 | 0.0040 |
chest|hip|wrist | 0.962 | 0.02 | 0.949 | 0.02 | 0.0130 |
ankle|chest|hip|wrist | 0.973 | 0.02 | 0.969 | 0.02 | 0.0040 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debache, I.; Jeantet, L.; Chevallier, D.; Bergouignan, A.; Sueur, C. A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors. Sensors 2020, 20, 3090. https://doi.org/10.3390/s20113090
Debache I, Jeantet L, Chevallier D, Bergouignan A, Sueur C. A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors. Sensors. 2020; 20(11):3090. https://doi.org/10.3390/s20113090
Chicago/Turabian StyleDebache, Isaac, Lorène Jeantet, Damien Chevallier, Audrey Bergouignan, and Cédric Sueur. 2020. "A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors" Sensors 20, no. 11: 3090. https://doi.org/10.3390/s20113090
APA StyleDebache, I., Jeantet, L., Chevallier, D., Bergouignan, A., & Sueur, C. (2020). A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors. Sensors, 20(11), 3090. https://doi.org/10.3390/s20113090