Multi-Stage Pedestrian Positioning Using Filtered WiFi Scanner Data in an Urban Road Environment
Abstract
:1. Introduction
- To solve the problem that it is difficult to accurately establish the RSSI-distance relationship in the RSSI-based positioning scheme, we propose a novel PPRM to capture the uncertainty of RSSI fluctuation. By contrast with the traditional propagation model (PM) or polynomial regression model (PRM), the developed RSSI–distance relationship can be formulated into a dynamic nth-degree polynomial to improve Euclidean distance estimation for pedestrian localization.
- Different from the previous filtering algorithms for indoor environment, we propose a new CVKF fusion algorithm to handle real-time RSSI fluctuations for the outdoor pedestrian positioning, and prove that CVKF + PPRM can further improve the distance estimation accuracy.
- We design an entire system of a multi-stage pedestrian positioning by using the combination of PPRM, CVKF, LS-TSE and UKF, which can achieve high-position accuracy performance in an urban road environment. By contrast with the GPS-based method that requires users to install software and initiate positioning requests, this positioning scheme based on WiFi scanner data can real-time locate pedestrians to help transportation agencies better monitor the abnormal situation of pedestrian flow and behavior.
2. Related Work
3. Model Development
3.1. System Overview
3.2. Received Signal Strength Indicator (RSSI)-Distance Estimation Based on Offline Data
3.2.1. Existing Propagation Model
3.2.2. Piecewise Polynomial Regression Model (PPRM)
3.3. Target Positioning Based on Real-Time Data
3.3.1. Real-Time Data Filtering Based on Constant Velocity Kalman Filter (CVKF)
3.3.2. Collaborative Positioning Based on Least Squares Taylor Series Expansion (LS-TSE)
3.3.3. Positioning Optimization Based on Unscented Kalman Filter (UKF)
4. Experiment Results
4.1. Experiment Description
4.2. Physical Distance Estimation Evaluation via Single Detector
4.2.1. RSSI-Distance Formula Based on PPRM
4.2.2. Physical Distance Estimation at the Static Points
4.3. Pedestrian Real-Time Positioning Evaluation via Multi-Detector
4.3.1. Analysis of Physical Distance Estimation from Real-Time Data
4.3.2. Analysis of Target Positioning Estimation Results via Multi-Detector
4.4. Complexity Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abedi, N.; Bhaskar, A.; Chung, E.; Miska, M. Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. Transp. Res. Part C Emerg. Technol. 2015, 60, 124–141. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z.Q.; Wu, J.K.; Wong, W.C.; Yu, H. Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module. IEEE Trans. Biomed. Eng. 2014, 61, 892–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Kim, B.K. Dynamic ultrasonic hybrid localization system for indoor mobile robots. IEEE Trans. Ind. Electron. 2013, 60, 4562–4573. [Google Scholar] [CrossRef]
- Choi, K.H.; Ra, W.S.; Park, S.Y.; Park, J.B. Robust least squares approach to passive target localization using ultrasonic receiver array. IEEE Trans. Ind. Electron. 2014, 61, 1993–2002. [Google Scholar] [CrossRef]
- Yang, P.; Wu, W.; Moniri, M.; Chibelushi, C.C. Efficient object localization using sparsely distributed passive RFID tags. IEEE Trans. Ind. Electron. 2013, 60, 5914–5924. [Google Scholar] [CrossRef]
- Merchant, K.; Revay, S.; Stantchev, G.; Nousain, B. Deep Learning for RF Device Fingerprinting in Cognitive Communication Networks. IEEE J. Sel. Top. Signal Process. 2018, 12, 160–167. [Google Scholar] [CrossRef]
- Steiner, C.; Wittneben, A. Low complexity location fingerprinting with generalized UWB energy detection receivers. IEEE Trans. Signal Process. 2010, 58, 1756–1767. [Google Scholar] [CrossRef]
- Bilal, M.; Khan, A.; Khan, M.U.K.; Kyung, C.M. A Low-Complexity Pedestrian Detection Framework for Smart Video Surveillance Systems. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 2260–2273. [Google Scholar] [CrossRef]
- Leung, L.; Liang, J. Psychological traits, addiction symptoms, and feature usage as predictors of problematic smartphone use among university students in China. In Substance Abuse and Addiction: Breakthroughs in Research and Practice; IGI Global: Hong Kong, China, 2019; pp. 321–341. [Google Scholar]
- Abu-Shaban, Z.; Zhou, X.; Abhayapala, T.D. A Novel TOA-Based Mobile Localization Technique under Mixed LOS/NLOS Conditions for Cellular Networks. IEEE Trans. Veh. Technol. 2016, 65, 8841–8853. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yang, J.; Li, Y.; Qi, L.; El-Sheimy, N. Smartphone-based indoor localization with bluetooth low energy beacons. Sensors 2016, 16, 596. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Chen, H.; Li, Y.; Jin, M. On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wirel. Commun. Lett. 2012, 1, 536–539. [Google Scholar] [CrossRef]
- Wang, J.; Luo, J.; Pan, S.J.; Sun, A. Learning-based outdoor localization exploiting crowd-labeled WiFi hotspots. IEEE Trans. Mob. Comput. 2019, 18, 896–909. [Google Scholar] [CrossRef]
- Bisio, I.; Garibotto, C.; Lavagetto, F.; Sciarrone, A. Outdoor Places of Interest Recognition with WiFi Fingerprint over Mobile Devices. IEEE Int. Conf. Commun. 2019, 2019, 5076–5086. [Google Scholar]
- Khalajmehrabadi, A.; Gatsis, N.; Akopian, D. Modern WLAN Fingerprinting Indoor Positioning Methods and Deployment Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 1974–2002. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, F.; Aparicio, F.; Páez, J. Intelligent transport systems and effects on road traffic accidents: State of the art. IET Intell. Transp. Syst. 2008, 2, 132. [Google Scholar]
- Malinovskiy, Y.; Saunier, N.; Wang, Y. Analysis of pedestrian travel with static bluetooth sensors. Transp. Res. Rec. 2012, 2299, 137–149. [Google Scholar] [CrossRef]
- Chen, H.; Wang, G.; Wang, Z.; So, H.C.; Poor, H.V. Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks. IEEE Trans. Wirel. Commun. 2012, 11, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liu, B.; Huang, P.; Liang, J.; Gu, Y. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks. Mob. Netw. Appl. 2012, 17, 90–99. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Q.; Tan, R.; Poor, H.V.; Sezaki, K. Mobile Element Assisted Cooperative Localization for wireless sensor networks with obstacles. Optimization 2010, 9, 956–963. [Google Scholar] [CrossRef]
- Prasad, K.N.R.S.V.; Hossain, E.; Bhargava, V.K. Machine Learning Methods for RSS-Based User Positioning in Distributed Massive MIMO. IEEE Trans. Wirel. Commun. 2018, 17, 8402–8417. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, L.; Tang, J.; Chen, Y.; Chen, R.; Chen, L. Signal Strength Measurements for Indoor Localization. IEEE Trans. Veh. Technol. 2018, 67, 2824–2829. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, H.; Li, H.; Xiang, W.; Lei, L.; Qiao, J.; Shen, X.S. Energy-Efficient Localization and Tracking of Mobile Devices in Wireless Sensor Networks. IEEE Trans. Veh. Technol. 2017, 66, 2714–2726. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Gao, F.; Martins, M.; Huang, P.; Liang, J. Accurate and efficient node localization for mobile sensor networks. Mob. Networks Appl. 2013, 18, 141–147. [Google Scholar] [CrossRef]
- WiGLE: Wireless Network Mapping. 2020. Available online: Available: https://wigle.net/ (accessed on 30 April 2020).
- Radiocells.Org. Home Page. Available online: Available: https://radiocells.org/ (accessed on 31 March 2020).
- Bahl, P.; Padmanabhan, V.N. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), Tel Aviv, Israel, 26–30 March 2000; Volume 2, pp. 775–784. [Google Scholar]
- Chai, X.; Yang, Q. Reducing the calibration effort for probabilistic indoor location estimation. IEEE Trans. Mob. Comput. 2007, 6, 649–662. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zhang, H.; Ng, J.K.Y.; Xia, Y.; Feng, L.; Lee, V.C.S.; Son, S.H. Toward Low-Overhead Fingerprint-Based Indoor Localization via Transfer Learning: Design, Implementation, and Evaluation. IEEE Trans. Ind. Inform. 2018, 14, 898–908. [Google Scholar] [CrossRef]
- Sun, W.; Xue, M.; Yu, H.; Tang, H.; Lin, A. Augmentation of Fingerprints for Indoor WiFi Localization Based on Gaussian Process Regression. IEEE Trans. Veh. Technol. 2018, 67, 10896–10905. [Google Scholar] [CrossRef]
- Kuo, S.P.; Tseng, Y.C. Discriminant minimization search for large-scale RF-based localization systems. IEEE Trans. Mob. Comput. 2011, 10, 291–304. [Google Scholar]
- Jondhale, S.R.; Deshpande, R.S. Kalman Filtering Framework-Based Real Time Target Tracking in Wireless Sensor Networks Using Generalized Regression Neural Networks. IEEE Sens. J. 2019, 19, 224–233. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Q.; Yu, Y.; Wang, H.; Jin, M. Toward robust indoor localization based on Bayesian filter using chirp-spread-spectrum ranging. IEEE Trans. Ind. Electron. 2012, 59, 1622–1629. [Google Scholar] [CrossRef]
- Nguyen, H.A.; Guo, H.; Low, K.S. Real-time estimation of sensor node’s position using particle swarm optimization with log-barrier constraint. IEEE Trans. Instrum. Meas. 2011, 60, 3619–3628. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, S.; Liu, W.; Mo, Y. Indoor localization based on curve fitting and location search using received signal strength. IEEE Trans. Ind. Electron. 2015, 62, 572–582. [Google Scholar] [CrossRef]
- Mazuelas, S.; Bahillo, A.; Lorenzo, R.M.; Fernandez, P.; Lago, F.A.; Garcia, E.; Blas, J.; Abril, E.J. Robust indoor positioning provided by real-time rssi values in unmodified WLAN networks. IEEE J. Sel. Top. Signal Process. 2009, 3, 821–831. [Google Scholar] [CrossRef]
- Zhu, J.; Luo, H.; Chen, Z.; Li, Z. RSSI based Bluetooth low energy indoor positioning. In Proceedings of the 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea, 27–30 October 2014; pp. 526–533. [Google Scholar]
- Bertuletti, S.; Cereatti, A.; Della, U.; Caldara, M.; Galizzi, M. Indoor distance estimated from Bluetooth Low Energy signal strength: Comparison of regression models. In Proceedings of the 2016 IEEE Sensors Applications Symposium (SAS), Catania, Italy, 20–22 April 2016; pp. 506–510. [Google Scholar]
- Luo, R.C.; Hsiao, T.J. Dynamic wireless indoor localization incorporating with an autonomous mobile robot based on an adaptive signal model fingerprinting approach. IEEE Trans. Ind. Electron. 2019, 66, 1940–1951. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, X.; Lin, Y.; Xu, L.; Mao, Y. A novel WIFI-oriented RSSI signal processing method for tracking low-speed pedestrians. In Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019; pp. 1018–1023. [Google Scholar]
- Liu, X.; Wang, Y.F. Research of automatically piecewise polynomial curve-fitting method based on least-square principle. Sci. Technol. Eng. 2014, 14, 55–58. [Google Scholar]
- Camp, T.; Boleng, J.; Davies, V. A survey of mobility models for ad hoc network research. Wirel. Commun. Mob. Comput. 2002, 2, 483–502. [Google Scholar] [CrossRef]
- Li, G.; Geng, E.; Ye, Z.; Xu, Y.; Lin, J.; Pang, Y. Indoor positioning algorithm based on the improved RSSI distance model. Sensors 2018, 18, 2820. [Google Scholar] [CrossRef] [Green Version]
Actual Distance | Fitting Distance | Error | Actual Distance | Fitting Distance | Error |
---|---|---|---|---|---|
25 | 23.57 | 1.43 | 12 | 9.12 | 2.88 |
24 | 22.78 | 1.22 | 11 | 11.14 | 0.14 |
23 | 24.98 | 1.98 | 10 | 9.94 | 0.06 |
22 | 22.13 | 0.13 | 9 | 11.09 | 2.09 |
21 | 22.57 | 1.57 | 8 | 6.10 | 1.90 |
20 | 21.68 | 1.68 | 7 | 7.32 | 0.32 |
19 | 19.54 | 0.54 | 6 | 8.38 | 2.38 |
18 | 16.52 | 1.48 | 5 | 7.23 | 2.23 |
17 | 16.09 | 0.91 | 4 | 5.47 | 1.47 |
16 | 15.17 | 0.83 | 3 | 7.95 | 4.95 |
15 | 11.42 | 3.58 | 2 | 2.23 | 0.23 |
14 | 11.30 | 2.70 | 1 | 0.35 | 0.65 |
13 | 10.92 | 2.08 | Mean Error | 1.58 |
Actual Distance | Fitting Distance | Error | Actual Distance | Fitting Distance | Error |
---|---|---|---|---|---|
15 | 13.36 | 1.64 | 7 | 6.06 | 0.94 |
14 | 13.01 | 0.99. | 6 | 7.06 | 1.06 |
13 | 11.91 | 1.09 | 5 | 6.00 | 1.00 |
12 | 8.06 | 3.84 | 4 | 5.10 | 1.10 |
11 | 12.52 | 1.52 | 3 | 6.60 | 3.60 |
10 | 9.56 | 0.44 | 2 | 2.03 | 0.03 |
9 | 12.37 | 3.37 | 1 | 1.00 | 0.01 |
8 | 5.37 | 2.63 | Mean Error | 1.56 |
Positioning Algorithm | Min Error | Max Error | Average Error | RMSE in X-axis | RMSE in Y-axis | Average RMSE in X-Y |
---|---|---|---|---|---|---|
TRI 1 | 0.28 | 9.15 | 2.44 | 0.97 | 3.00 | 1.99 |
LSM 2 | 0.27 | 6.04 | 1.96 | 0.73 | 2.23 | 1.48 |
LS-TSE 3 | 0.13 | 5.44 | 1.82 | 0.74 | 2.03 | 1.39 |
LS-TSE+UKF 4 | 0.18 | 3.32 | 1.67 | 1.40 | 1.24 | 1.32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Xu, L.; Lin, Y. Multi-Stage Pedestrian Positioning Using Filtered WiFi Scanner Data in an Urban Road Environment. Sensors 2020, 20, 3259. https://doi.org/10.3390/s20113259
Huang Z, Xu L, Lin Y. Multi-Stage Pedestrian Positioning Using Filtered WiFi Scanner Data in an Urban Road Environment. Sensors. 2020; 20(11):3259. https://doi.org/10.3390/s20113259
Chicago/Turabian StyleHuang, Zilin, Lunhui Xu, and Yongjie Lin. 2020. "Multi-Stage Pedestrian Positioning Using Filtered WiFi Scanner Data in an Urban Road Environment" Sensors 20, no. 11: 3259. https://doi.org/10.3390/s20113259
APA StyleHuang, Z., Xu, L., & Lin, Y. (2020). Multi-Stage Pedestrian Positioning Using Filtered WiFi Scanner Data in an Urban Road Environment. Sensors, 20(11), 3259. https://doi.org/10.3390/s20113259