An Affordable Fabrication of a Zeolite-Based Capacitor for Gas Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrical Conductivity of Zeolite
2.2. Sensor Manufacturing and Characterization
2.3. Measurement Procedure
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Bhattacharyya, P.; Acharyya, D.; Dutta, K. Resistive and Capacitive Measurement of Nano-Structured Gas Sensors. Environ. Chem. Sustain. World 2018, 21, 25–62. [Google Scholar]
- Kumar, A.; Kim, H.; Hancke, G.P. Environmental monitoring systems: A review. IEEE Sens. J. 2013, 13, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, A.S.; Vinko, J.D.; Accattato, F.; Bianco, M.G.; Critello, C.D.; Pullano, S.A. Zeolite-Based Interfaces for CB Sensors. In Nanostructured Materials for the Detection of CBRN; Bonča, J., Kruchinin, S., Eds.; NATO Science for Peace and Security Series A: Chemistry and Biology; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar]
- Rudenko, S.P.; Stetsenko, M.O.; Maksimenko, L.S.; Kryvyi, S.B.; Serdega, B.K.; Fiorillo, A.S.; Pullano, S.A. Optical Polarization Characteristics of Zeolite Deposited on Different Substrates for Perspective Modulation Biosensor Systems. In Nanostructured Materials for the Detection of CBRN; Bonča, J., Kruchinin, S., Eds.; NATO Science for Peace and Security Series A: Chemistry and Biology; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar]
- Fiorillo, A.S.; Tiriolo, R.; Pullano, S.A. Absorption of urea into zeolite layer integrated with microelectronic circuits. IEEE Trans. Nanotechnol. 2015, 14, 214–217. [Google Scholar] [CrossRef]
- Leary, P.E.; Dobson, G.S.; Reffner, J.A. Chromatography–Mass Spectrometry for Emergency Responders, the Military, and Law-Enforcement Organizations. Appl. Spectrosc. 2016, 70, 888. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, M.; Tranchida, P.Q.; Mondello, L. Fast Gas Chromatography-Mass Spectrometry: A Review of the Last Decade. TrAC Trends Anal. Chem. 2019, 118, 444–452. [Google Scholar] [CrossRef]
- Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H. Smart single-chip gas sensor microsystem. Nature 2001, 414, 293–296. [Google Scholar] [CrossRef]
- Alrammouz, R.; Podlecki, J.; Abboud, P.; Sorli, B.; Habchi, R. A review on flexible gas sensors: From materials to devices. Sens. Actuators A Phys. 2018, 284, 209–231. [Google Scholar] [CrossRef]
- Bindra, P.; Hazra, A. Capacitive gas and vapor sensors using nanomaterials. J. Mater. Sci. Mater. Electron. 2018, 29, 6129–6148. [Google Scholar] [CrossRef]
- Capuano, R.; Catini, A.; Paolesse, R.; Di Natale, C. Sensors for Lung Cancer Diagnosis. J. Clin. Med. 2019, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Bogue, R. Detecting gases with light: A review of optical gas sensor technologies. Sens. Rev. 2015, 35, 133–140. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361. [Google Scholar] [CrossRef] [Green Version]
- Wolkenstein, T. Electronic Processes on Semiconductor Surfaces during Chemisorption; Consultants Bureau: New York, NY, USA, 1991. [Google Scholar]
- D’Amico, A.; Di Natale, C.; Falconi, C.; Pennazza, G.; Santonico, M.; Lundstrom, I. Equivalent electric circuits for chemical sensors in the Langmuir regime. Sens. Actuators B Chem. 2017, 238, 214–220. [Google Scholar] [CrossRef]
- Arshak, K.; Moore, E.; Lyons, G.E.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Tiemann, M. Porous Metal Oxides as Gas Sensors. Chem. A Eur. J. 2007, 13, 8376–8388. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, I.A. Porous Silicon Structures as Optical Gas Sensors. Sensors 2015, 15, 19968–19991. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice. Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Bochenkov, V.E.; Sergeev, G.B. Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures. In Metal Oxide Nanostructures and Their Applications; Umar, A., Hahn, Y.-B., Eds.; American Scientific: Stevenson Ranch, CA, USA, 2010; Volume 3, pp. 31–52. [Google Scholar]
- Kaushik, A.; Kumar, R.; Jayant, R.D.; Nair, M. Nanostructured Gas Sensors for Health Care: An Overview. J. Pers. Nanomed. 2015, 1, 10–23. [Google Scholar]
- The Runners-Up. Science 2011, 334, 1629–1635. [CrossRef] [Green Version]
- Baerlocher, C.; Meier, W.M.; Olson, D.H. Atlas of Zeolite Framework Types, 5th ed.; Elsevier: London, UK, 2001. [Google Scholar]
- Available online: http://www.iza-structure.org/databases/ (accessed on 13 February 2019).
- Walcarius, A.; Rozanska, S.; Bessière, J.; Wang, J. Screen-printed zeolite-modified carbon electrodes. Analyst 1999, 124, 1185–1190. [Google Scholar] [CrossRef]
- Stetsenko, M.; Pullano, S.A.; Margitych, T.; Maksimenko, L.; Hassan, A.; Kryvyi, S.; Hu, R.; Huang, C.; Ziniuk, R.; Golovynskyi, S.; et al. Antireflection Enhancement by Composite Nanoporous Zeolite 3A–Carbon Thin Film. Nanomaterials 2019, 9, 1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grizzetti, R.; Artioli, G.; Gemmi, M.; Carsughi, F.; Riello, P. In situ waxs-saxs synchrotron study of the kinetics of nucleation and growth in linde type-a zeolite (LTA). Stud. Surf. Sci. Catal. 2004, 154, 355–363. [Google Scholar]
- Pullano, S.A.; Rudenko, S.; Stetsenko, M.; Krishchenko, I.; Maksymenko, L.; Synyuk, V.; Fiorillo, A.S. Antireflection properties of composite zeolite gold nanoparticles film. Electron. Lett. 2018, 54, 370–372. [Google Scholar]
- Bordeneuve, H.; Wales, D.J.; Physick, A.J.W.; Doan, H.V.; Ting, V.P.; Bowen, C.R. Understanding the AC conductivity and permittivity of trapdoor chabazites for future development of next-generation gas sensors. Microporous Mesoporous Mater. 2018, 260, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Li, G.; Gu, Q.; Singh, R.; Xiao, P.; Liu, J.Z.; Webley, P.A. Temperature controlled invertible selectivity for adsorption of N2 and CH4 by molecular trapdoor chabazites. Chem. Commun. 2014, 50, 4544. [Google Scholar] [CrossRef] [PubMed]
- Reiß, S.; Hagen, G.; Moos, R. Zeolite-based Impedimetric Gas Sensor Device in Low-cost Technology for Hydrocarbon Gas Detection. Sensors 2008, 8, 7904–7916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorillo, A.S. Deposition of Zeolite Thin Layers onto Silicon Wafers for Biomedical Use. IEEE Trans. Nanotechnol. 2012, 11, 654–656. [Google Scholar] [CrossRef]
- Walcarius, A.; Barbaise, T.; Bessiere, J. Factors affecting the analytical applications of zeolite-modified electrodes preconcentration of electroactive species. Anal. Chim. Acta 1997, 340, 61–76. [Google Scholar] [CrossRef]
- Sahner, K.; Hagen, G.; Schonauer, D.; Reiß, S.; Moos, R. Zeolites—Versatile materials for gas sensors. Solid State Ion. 2008, 179, 2416–2423. [Google Scholar] [CrossRef]
- Güntner, A.T.; Abegg, S.; Wegner, K.; Pratsinis, S.E. Zeolite membranes for highly selective formaldehyde sensors. Sens. Actuators B Chem. 2018, 257, 916–923. [Google Scholar] [CrossRef]
- Dyer, A. An Introduction to Zeolite Molecular Sieves; John Wiley and Sons, Bath Press Ltd.: Bath, UK, 1988. [Google Scholar]
- Muresan, L.M. Zeolite-Modified Electrodes with Analytical Applications. Pure Appl. Chem. 2011, 83, 325–343. [Google Scholar] [CrossRef]
- Álvaro, M.; Cabeza, J.F.; Fabuel, D.; García, H.; Guijarro, E.; Martínez de Juan, J.L. Electrical Conductivity of Zeolite Films: Influence of Charge Balancing Cations and Crystal Structure. Chem. Mater. 2006, 18, 26–33. [Google Scholar] [CrossRef]
- Freeman, D.C.; Stamires, D.N. Electrical Conductivity of Synthetic Crystalline Zeolites. J. Chem. Phys. 1961, 35, 799–806. [Google Scholar] [CrossRef]
- Wales, D.J.; Grand, J.; Ting, V.P.; Burke, R.D.; Edler, K.J.; Bowen, C.R.; Mintova, S.; Burrows, A.D. Gas sensing using porous materials for automotive applications. Chem. Soc. Rev. 2015, 44, 4290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drioli, E.; Giorno, L. Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-44325-5. [Google Scholar]
- Buchwald, P.; Bodor, N. Molecular Size-Based Model to Describe Simple Organic Liquids. J. Phys. Chem. B 1998, 102, 5715–5726. [Google Scholar] [CrossRef]
- Kodentsov, A.; van Dal, M.J.; Cserháti, C.; Daróczi, L.; van Loo, F.J. Permeation of nitrogen in solid nickel and deformation phenomena accompanying internal nitridation. Acta Mater. 1999, 47, 3169–3180. [Google Scholar] [CrossRef]
- Benguerba, Y.; Amer, J.; Ernst, B. CFD modeling of the H2/N2 separation with a nickel/α-alumina microporous membrane. Chem. Eng. Sci. 2015, 123, 527–535. [Google Scholar] [CrossRef]
- Poiana, M.-A.; Alexa, E.; Munteanu, M.-F.; Gligor, R.; Moigradean, D.; Mateescu, C. Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment. Open Chem. 2015, 13, 689–698. [Google Scholar] [CrossRef]
- Pabby, A.K.; Rizvi, S.S.H.; Sastre, A.M. Handbook of Membrane Seperations: Chemical, Pharmaceutical, Food and Biotechnological Applications; CRC Press, Taylor & Francis Group: New York, NY, USA, 2002. [Google Scholar]
- Pullano, S.A.; Islam, S.K.; Fiorillo, A.S. Pyroelectric sensor for temperature monitoring of biological fluids in microchannel devices. IEEE Sens. J. 2014, 14, 2725–2730. [Google Scholar] [CrossRef]
- Mahabole, M.; Lakhane, M.; Choudhari, A.; Khairnar, R. Dielectric and ethanol sensing studies on synthesized nano-ZSM-5 zeolite. Indian J. Phys. 2014, 89, 167–174. [Google Scholar] [CrossRef]
- Lakhane, M.; Bogle, K.; Khairnar, R.; Dahiwale, S.; Sharma, R.; Mokale, V.; Mahabole, M. Dielectric properties of zeolite based metal oxide nanocomposites. Nano Struct. Nano Objects 2019, 17, 248–258. [Google Scholar] [CrossRef]
- Ishihara, T.; Matsubara, S. Capacitive Type Gas Sensors. J. Electroceramics 1998, 2, 215–228. [Google Scholar] [CrossRef]
- Balkus, K.J.; Ball, L.J.; Gnade, B.E.; Anthony, J.M. A Capacitance Type Chemical Sensor Based on AlPO4-5 Molecular Sieves. Chem. Mater. 1997, 9, 380–386. [Google Scholar] [CrossRef]
Gas Molecule | Molecular Weight (g/mol) | Kinetic Diameter (Å) |
---|---|---|
Nitrogen (N2) | 28.01 | 3.64 |
Nitric oxide (NO) | 30.01 | 3.80 |
1,1-Difluoroethane (C2H4F2) | 66.05 | 4.36 ** |
dry air | 28.97 * | 3.30–3.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullano, S.A.; Falcone, F.; Critello, D.C.; Bianco, M.G.; Menniti, M.; Fiorillo, A.S. An Affordable Fabrication of a Zeolite-Based Capacitor for Gas Sensing. Sensors 2020, 20, 2143. https://doi.org/10.3390/s20072143
Pullano SA, Falcone F, Critello DC, Bianco MG, Menniti M, Fiorillo AS. An Affordable Fabrication of a Zeolite-Based Capacitor for Gas Sensing. Sensors. 2020; 20(7):2143. https://doi.org/10.3390/s20072143
Chicago/Turabian StylePullano, Salvatore Andrea, Francesco Falcone, Davide C. Critello, Maria Giovanna Bianco, Michele Menniti, and Antonino S. Fiorillo. 2020. "An Affordable Fabrication of a Zeolite-Based Capacitor for Gas Sensing" Sensors 20, no. 7: 2143. https://doi.org/10.3390/s20072143
APA StylePullano, S. A., Falcone, F., Critello, D. C., Bianco, M. G., Menniti, M., & Fiorillo, A. S. (2020). An Affordable Fabrication of a Zeolite-Based Capacitor for Gas Sensing. Sensors, 20(7), 2143. https://doi.org/10.3390/s20072143