A Simple High-Resolution Near-Field Probe for Microwave Non-Destructive Test and Imaging
Abstract
:1. Introduction
2. Probe Design
2.1. Fields Confinement Analysis of CSRs
2.2. The CSRs-Based Probe
3. Sensitivity and Resolution Evaluation
4. The Abilities of Conventional Defects Detection
4.1. The Cracks and Vias of Non-Metal Materials
4.2. The Cracks and Vias of Metal Materials
4.3. Two Samples for Further Evaluation of Imaging Abilities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, Z.; Wang, G.; Sun, L. Localised spoof surface plasmon-based sensor for omni-directional cracks detection in metal surfaces. IET Microw. Antennas Propag. 2019, 13, 2061–2066. [Google Scholar] [CrossRef]
- Abou-Khousa, M.A.; Shafi, K.T.M.; Xie, X. High-Resolution UHF Near-Field Imaging Probe. IEEE Trans. Instrum. Meas. 2018, 67, 2353–2362. [Google Scholar] [CrossRef]
- Albishi, A.M.; Ramahi, O.M. Microwaves-based high sensitivity sensors for crack detection in metallic materials. IEEE Trans. Microw. Theory Tech. 2017, 65, 1864–1872. [Google Scholar] [CrossRef]
- Yeh, C.-Y.; Zoughi, R. A novel microwave method for detection of long surface cracks in metals. IEEE Trans. Instrum. Meas. 1994, 43, 719–725. [Google Scholar]
- Zhang, H.; He, Y.; Gao, B.; Tian, G.Y.; Xu, L.; Wu, R. Evaluation of Atmospheric Corrosion on Coated Steel Using K -Band Sweep Frequency Microwave Imaging. IEEE Sen. J. 2016, 16, 3025–3033. [Google Scholar] [CrossRef]
- Qaddoumi, N.N.; Saleh, W.M.; Abou-Khousa, M. Innovative near-field microwave nondestructive testing of corroded metallic structures utilizing open-ended rectangular waveguide probes. IEEE Trans. Instrum. Meas. 2007, 56, 1961–1966. [Google Scholar] [CrossRef]
- Sediq, A.S.B.; Qaddoumi, N. Near-field microwave image formation of defective composites utilizing open-ended waveguides with arbitrary cross sections. Compos. Struct. 2005, 71, 343–348. [Google Scholar] [CrossRef]
- Jundi, A.J.; Qaddoumi, N.N. Near-field microwave model of multilayered structures illuminated by open-ended rectangular waveguides. IET Microw. Antennas Propag. 2012, 6, 100–107. [Google Scholar] [CrossRef]
- Saleh, W.; Qaddoumi, N.; Abu-Khousa, M. Preliminary investigation of near-field nondestructive testing of carbon-loaded composites using loaded open-ended waveguides. Compos. Struct. 2003, 62, 403–407. [Google Scholar] [CrossRef]
- Diener, L. Microwave near-field imaging with open-ended waveguide—Comparison with other techniques of nondestructive testing. Res. Nondestr. Eval. 1995, 7, 137–152. [Google Scholar]
- Saleh, W.; Qaddoumi, N. Potential of near-field microwave imaging in breast cancer detection utilizing tapered rectangular waveguide probes. Comput. Electr. Eng. 2009, 35, 587–593. [Google Scholar] [CrossRef]
- Ur Rahman, M.S.; Yassin, A.; Abou-Khousa, M.A. Microwave imaging of thick composite structures using circular aperture probe. Meas. Sci. Technol. 2018, 29, 095403. [Google Scholar]
- Ramzi, M.R.; Abou-Khousa, M.; Prayudi, I. Near-field microwave imaging using open-ended circular waveguide probe. IEEE Sens. J. 2017, 17, 2359–2366. [Google Scholar] [CrossRef]
- Wang, Q.; Bi, K.; Hao, Y.; Guo, L.; Dong, G.; Wu, H.; Lei, M. High-sensitivity dielectric resonator-based waveguide sensor for crack detection on metallic surfaces. IEEE Sen. J. 2019, 19, 5470–5474. [Google Scholar] [CrossRef]
- Malyuskin, O.; Fusco, V. Resonantly loaded apertures for high-resolution near-field surface imaging. IET Sci. Meas. Technol. 2015, 9, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Malyuskin, O.; Fusco, V.F. High-resolution microwave near-field surface imaging using resonance probes. IEEE Trans. Instrum. Meas. 2016, 65, 189–200. [Google Scholar] [CrossRef]
- Malyuskin, O.; Fusco, V.F. Super-resolution defect characterization using microwave near-field resonance reflectometry and cross-correlation image processing. Sens. Imaging 2017, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Ren, Z.; Boybay, M.S.; Ramahi, O.M. Waveguide probe loaded with split-ring resonators for crack detection in metallic surfaces. IEEE Trans. Microw. Theory Tech. 2014, 62, 871–878. [Google Scholar] [CrossRef]
- Ali, A.; Hu, B.; Ramahi, O.M. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements. Sensors 2015, 15, 11402–11416. [Google Scholar] [CrossRef] [Green Version]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based microfluidic sensor for dielectric characterization. Sens. Actuators A Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Romera, G.; Herraiz-Martínez, F.J.; Gil, M.; Martínez-Martínez, J.J.; Segovia-Vargas, D. Submersible Printed Split-Ring Resonator-Based Sensor for Thin-Film Detection and Permittivity Characterization. IEEE Sen. J. 2016, 16, 3587–3596. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization. IEEE Sen. J. 2014, 14, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Boybay, M.S.; Ramahi, O.M. Material Characterization Using Complementary Split-Ring Resonators. IEEE Trans. Instrum. Meas. 2012, 61, 3039–3046. [Google Scholar] [CrossRef]
- Juan, C.G.; Bronchalo, E.; Potelon, B.; Quendo, C.; Ávila-Navarro, E.; Sabater-Navarro, J.M. Concentration Measurement of Microliter-Volume Water–Glucose Solutions Using Q Factor of Microwave Sensors. IEEE Trans. Instrum. Meas. 2019, 68, 2621–2634. [Google Scholar] [CrossRef]
- Mukherjee, S.; Shi, X.; Udpa, L.; Udpa, S.; Deng, Y. Design of a split-ring resonator sensor for near-field microwave imaging. IEEE Sens. J. 2018, 18, 7066–7076. [Google Scholar] [CrossRef]
- Tiwari, N.K.; Singh, S.P.; Akhtar, M.J. Near field planar microwave probe sensor for nondestructive condition assessment of wood products. J. Appl. Phys. 2018, 123, 224502. [Google Scholar] [CrossRef]
- Albishi, A.M.; Boybay, M.S.; Ramahi, O.M. Complementary split-ring resonator for crack detection in metallic surfaces. IEEE Microw. Wireless Compon. Lett. 2012, 22, 330–332. [Google Scholar] [CrossRef]
- Albishi, A.; Ramahi, O. Detection of surface and subsurface cracks in metallic and non-metallic materials using a complementary split-ring resonator. Sensors 2014, 14, 19354–19370. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Badawe, M.E.; Ramahi, O.M. Microwave imaging of subsurface flaws in coated metallic structures using complementary split-ring resonators. IEEE Sen. J. 2016, 16, 6890–6898. [Google Scholar]
- Govind, G.; Tiwari, N.K.; Agrawal, K.K.; Akhtar, M.J. Microwave subsurface imaging of composite structures using complementary split ring resonators. IEEE Sen. J. 2018, 18, 7442–7449. [Google Scholar] [CrossRef]
- Salim, A.; Lim, S. Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor. Sensors 2016, 16, 1802. [Google Scholar] [CrossRef] [Green Version]
- Yun, T.; Lim, S. High-Q and miniaturized complementary split ring resonator-loaded substrate integrated waveguide microwave sensor for crack detection in metallic materials. Sens. Actuators A Phys. 2014, 214, 25–30. [Google Scholar] [CrossRef]
- Akbarian, E.; Najafi, B.; Jafari, M.; Ardabili, S.F.; Shamshirband, S.; Chau, K. Experimental and computational fluid dynamics-based numerical simulation of using natural gas in a dual-fueled diesel engine. Eng. Appl. Comput. Fluid Mech. 2018, 12, 517–534. [Google Scholar] [CrossRef] [Green Version]
- Abadi, A.M.E.; Sadi, M.; Farzaneh-Gord, M.; Ahmadi, M.H.; Kumar, R.; Chau, K. A numerical and experimental study on the energy efficiency of a regenerative Heat and Mass Exchanger utilizing the counter-flow Maisotsenko cycle. Eng. Appl. Comput. Fluid Mech. 2020, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- HFSS-High Frequency Structure Simulator. Available online: https://www.ansys.com/products/electronics/ansys-hfss (accessed on 19 October 2019).
Parameters | Values | |||||
---|---|---|---|---|---|---|
SOD (mm) | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
HEPB (mm) | 6.71 | 5.23 | 4.53 | 4.21 | 4.08 | 4.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Li, Y.; Sun, L.; Wu, W.; Cao, R.; Tao, X. A Simple High-Resolution Near-Field Probe for Microwave Non-Destructive Test and Imaging. Sensors 2020, 20, 2670. https://doi.org/10.3390/s20092670
Xie Z, Li Y, Sun L, Wu W, Cao R, Tao X. A Simple High-Resolution Near-Field Probe for Microwave Non-Destructive Test and Imaging. Sensors. 2020; 20(9):2670. https://doi.org/10.3390/s20092670
Chicago/Turabian StyleXie, Zipeng, Yongjie Li, Liguo Sun, Wentao Wu, Rui Cao, and Xiaohui Tao. 2020. "A Simple High-Resolution Near-Field Probe for Microwave Non-Destructive Test and Imaging" Sensors 20, no. 9: 2670. https://doi.org/10.3390/s20092670
APA StyleXie, Z., Li, Y., Sun, L., Wu, W., Cao, R., & Tao, X. (2020). A Simple High-Resolution Near-Field Probe for Microwave Non-Destructive Test and Imaging. Sensors, 20(9), 2670. https://doi.org/10.3390/s20092670