Fabrication, Characterization and Performance of Low Power Gas Sensors Based on (GaxIn1-x)2O3 Nanowires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Vapor Deposition Growth
2.2. Active Material Characterisation
2.3. Gas Measurements
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM)
3.2. Transmission Electron Microscopy (TEM)
3.3. Photoluminescence (PL)
3.4. X-ray Diffraction (XRD)
3.5. Gas Sensing Behaviour
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Korotcenkov, G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials 2020, 10, 1392. [Google Scholar] [CrossRef]
- Huang, J.; Wan, Q. Gas Sensors Based on Semiconducting Metal Oxide. Sensors 2009, 9, 9903–9924. [Google Scholar] [CrossRef] [PubMed]
- Samà, J.; Barth, S.; Domènech-Gil, G.; Prades, J.-D.; López, N.; Casals, O.; Gràcia, I.; Cané, C.; Romano-Rodríguez, A. Site-selectively grown SnO2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions. Sens. Actuators B Chem. 2016, 232, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Domènech-Gil, G.; Barth, S.; Samà, J.; Pellegrino, P.; Gràcia, I.; Cané, C.; Romano-Rodriguez, A. Gas sensors based on individual indium oxide nanowire. Sens. Actuators B Chem. 2017, 238, 447–454. [Google Scholar] [CrossRef]
- Zhanga, C.; Liua, G.; Geng, X.; Wua, K.; Debliquy, M. Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review. Sens. Actuators A 2020, 309, 112026. [Google Scholar] [CrossRef]
- Gautam, Y.K.; Sharma, K.; Tyagi, S.; Ambedkar, A.K.; Chaudhary, M.; Pal Singh, B. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: Progress and challenges. R. Soc. Open Sci. 2021, 8, 201324. [Google Scholar] [CrossRef]
- Barth, S.; Jimenez-Diaz, R.; Samà, J.; Prades, J.D.; Gracia, I.; Santander, J.; Cané, C.; Romano-Rodriguez, A. Localized growth and in situ integration of nanowires for device applications. Chem. Commun. 2012, 48, 4734–4736. [Google Scholar] [CrossRef]
- Afzal, A. β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies. J. Materiomics 2019, 5, 542–557. [Google Scholar] [CrossRef]
- Barth, S.; Hernandez-Ramirez, F.; Holmes, J.D.; Romano-Rodriguez, A. Synthesis and applications of one-dimensional semiconductors. Progr. Mat. Science 2010, 55, 563–627. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Boris, I.; Brinzari, V.; Han, S.H.; Cho, B.K.; Lychkovsky, Y.N. In2O3: Ga and In2O3:P-based one-electrode gas sensors: Comparative study. Cer. International. 2015, 41, 7478–7488. [Google Scholar] [CrossRef]
- Ratko, A.; Babushkin, O.; Baran, A.; Baran, S. Sorption and Gas Sensitive Properties of In2O3 Based Ceramics Doped with Ga2O3. J. Euro. Cer. Soc. 1998, 98, 1–6. [Google Scholar] [CrossRef]
- López, I.; Utrilla, A.D.; Nogales, E.; Méndez, B.; Piqueras, J.; Peche, A.; Ramírez-Castellanos, J.; Gonza, J.M. In-Doped Gallium Oxide Micro- and Nanostructures: Morphology, Structure, and Luminescence Properties. J. Phys. Chem. 2012, 116, 3935–3943. [Google Scholar] [CrossRef]
- Zou, X.; Liu, X.; Wang, C.; Jiang, Y.; Wang, Y.; Xiao, X.; Ho, J.C.; Li, J.; Jiang, C.; Xiong, Q.; et al. Controlable Electrical Properties of Metal-Doped In2O3 Nanowires for High-Performance Enhancement-Mode Transistors. ACS Nano 2013, 7, 804–810. [Google Scholar] [CrossRef]
- López-Aymerich, E.; Domènech-Gil, G.; Moreno-Sereno, M.; Prades, J.D.; Pellegrino, P.; Barth, S.; Romano-Rodriguez, A. Gas sensors based on individual (Ga, In)2O3 nanowires. Proceedings 2017, 1, 321. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.S.; Ellis, W.C. The Vapor-Liquid-Solid Mechanism of Crystal Growth and its Application to Silicon. Trans. Metallur. Soc. AIME 1965, 233, 1053–1064. [Google Scholar]
- Johansson, J.; Dick, K.A. Recent advances in semiconductor nanowire heterostructures. Cryst. Eng. Comm. 2011, 13, 7175–7184. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Singh, V.N.; Mehta, B.R.; Singh, J.P. Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients. Nanotechnology 2009, 20, 1–7. [Google Scholar] [CrossRef]
- Semancik, S.; Cavicchi, R.E.; Wheeler, M.C.; Tiffany, J.E.; Poirier, G.E.; Walton, R.M.; Suehle, J.S.; Panchapakesan, B.; Devoe, D.L. Microhotplate platforms for chemical sensor research. Sens. Actuators B Chem. 2001, 77, 579–591. [Google Scholar] [CrossRef]
- Hernández-Ramírez, F.; Tarancón, A.; Casals, O.; Rodríguez, J.; Romano-Rodríguez, A.; Morante, J.R.; Barth, S.; Mathur, S.; Poulikakos, D.; Callegari, V.; et al. Fabrication and electrical characterization of circuits based on individual tin oxide nanowires. Nanotechnology 2006, 17, 5577–5583. [Google Scholar] [CrossRef]
- Dick, K.A.; Kodambaka, S.; Reuter, M.C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L.R.; Ross, F.M. The Morphology of Axial and Branched Nanowire Heterostructures. Nano. Lett. 2007, 7, 1817–1822. [Google Scholar] [CrossRef]
- Singh, N.; Zhang, T.; Lee, P.S. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods. Nanotechnology 2009, 20, 195605. [Google Scholar] [CrossRef]
- Paladugu, M.; Zou, J.; Guo, Y.; Auchterlonie, G.J.; Joyce, H.J.; Gao, Q.; Tan, H.H.; Jagadish, C.; Kim, Y. Nanowire growth. Small 2007, 3, 1873–1877. [Google Scholar] [CrossRef]
- Hadia, N.M.A.; Mohamed, H.A. Synthesis, structure and optical properties of single-crystalline In2O3 nanowires. J. All. Comp. 2013, 547, 63–67. [Google Scholar] [CrossRef]
- Wu, P.; Li, Q.; Zhao, C.X.; Zhang, D.L.; Chi, L.F.; Xiao, T. Synthesis and photoluminescence property of indium oxide nanowires. Appl. Surf. Sc. 2008, 255, 3201–3204. [Google Scholar] [CrossRef]
- Zheng, M.J.; Zhang, L.D.; Li, G.H.; Zhang, X.Y.; Wang, X.F. Ordered indium-oxide nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 2001, 79, 839–841. [Google Scholar] [CrossRef]
- Regoutz, A.; Egdell, R.G.; Morgan, D.J.; Palgrave, R.G.; Téllez, H.; Skinner, S.J.; Payne, D.J.; Watson, G.W.; Scanlon, D.O. Electronic and surface properties of Ga-doped In2O3 ceramics. Appl. Surf. Sc. 2015, 349, 970–982. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Wang, C.Y.; Cimalla, V.; Romanus, H.; Kups, T.; Ecke, G.; Stauden, T.; Ali, M.; Lebedev, V.; Pezoldt, J.; Ambacher, O. Phase selective growth and properties of rhombohedral and cubic indium oxide. App. Phys. Lett. 2006, 89, 1–4. [Google Scholar] [CrossRef]
- Landolt, H.H.; Börnstein, R. Physical-Chemical Tables II-4, 6th ed.; Springer: Berlin, Germany, 1996; pp. 807–837. [Google Scholar]
- Edwards, D.D.; Mason, T.O. Subsolidus phase relations in the Ga2O3-In2O3-SnO2 system. J. Am. Ceram. Soc. 1998, 81, 3285–3292. [Google Scholar] [CrossRef]
SAMPLE | 2θ (°) | a (nm) | x in (GaxIn1-x)2O3 |
---|---|---|---|
Sample A | 30.64 | 1.0109 | 0.025 |
Sample B | 30.59 | 1.0118 | <0.01 |
Sample C | 30.67 | 1.0098 | 0.06 |
Sample D | 30.71 | 1.0086 | 0.09 |
Operating Temperature (°C) | ΔR/R (%) | τres (s) | τrec (s) |
---|---|---|---|
150 | 33 [10 ppm]; 60 [80 ppm] | 500 | 1150 |
200 | 35 [10 ppm]; 105 [80 ppm] | 40 | 800 |
200 (In2O3 NW) | 25 [10 ppm]; 40 [80 ppm] | 160 | 2000 |
Operating Temperature (°C) | ΔR/R (%) | τres (s) | τrec (s) |
---|---|---|---|
150 | 20 | 2260 | 2460 |
200 | 220 | 1980 | 2780 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Aymerich, E.; Domènech-Gil, G.; Moreno, M.; Pellegrino, P.; Romano-Rodriguez, A. Fabrication, Characterization and Performance of Low Power Gas Sensors Based on (GaxIn1-x)2O3 Nanowires. Sensors 2021, 21, 3342. https://doi.org/10.3390/s21103342
López-Aymerich E, Domènech-Gil G, Moreno M, Pellegrino P, Romano-Rodriguez A. Fabrication, Characterization and Performance of Low Power Gas Sensors Based on (GaxIn1-x)2O3 Nanowires. Sensors. 2021; 21(10):3342. https://doi.org/10.3390/s21103342
Chicago/Turabian StyleLópez-Aymerich, Elena, Guillem Domènech-Gil, Mauricio Moreno, Paolo Pellegrino, and Albert Romano-Rodriguez. 2021. "Fabrication, Characterization and Performance of Low Power Gas Sensors Based on (GaxIn1-x)2O3 Nanowires" Sensors 21, no. 10: 3342. https://doi.org/10.3390/s21103342
APA StyleLópez-Aymerich, E., Domènech-Gil, G., Moreno, M., Pellegrino, P., & Romano-Rodriguez, A. (2021). Fabrication, Characterization and Performance of Low Power Gas Sensors Based on (GaxIn1-x)2O3 Nanowires. Sensors, 21(10), 3342. https://doi.org/10.3390/s21103342