Predicting Exact Valence and Arousal Values from EEG
Abstract
:1. Introduction
- A systematic study of the best features, brain waves and machine learning models for predicting exact valence and arousal values (Section 4);
- Identification of the two best machine learning regressors (KNN and RF), out of seven, for predicting values for valence and arousal (Section 4.3);
- Combination and study of features from the time, frequency and wavelet domain, complemented with asymmetry features, for valence and arousal prediction (Section 4.4 and Section 4.5);
- A model able to predict exact values for valence and arousal with a low error, which can also predict emotional classes with the highest accuracy among state-of-the-art methods (Section 5).
2. Background and Related Work
2.1. Emotions
2.2. Physiological Signals and EEG
2.3. Brain Waves and Features
2.4. Emotion Classification
3. Materials and Methods
3.1. Datasets
3.2. Brain Waves
3.3. Features
3.3.1. Hjorth Parameters
3.3.2. Spectral Entropy
3.3.3. Wavelet Energy and Entropy
3.3.4. IMF Energy and Entropy
Algorithm 1 EMD decomposition steps. |
|
3.4. Regression Methods
3.5. Metrics
4. Proposed Model
4.1. Feature Vector
4.2. Methodology
- Regressors Selection: In this step, we compared the accuracy of the seven regressors selected for our analysis. For that, we used a feature vector composed by all the features computed for all electrodes and all waves (but without the asymmetry features);
- Brain Asymmetry: After identifying the best regressors, we checked if the use of brain asymmetry could improve the results, and if so, which type of asymmetry and waves produced the best results;
- Features by Waves: We verified the accuracy achieved using each feature (for each brain wave) individually. To perform feature selection, we used a forward selection (wrapper method) [56], where we started by ranking the features based on their PCC values, and then added one by one to the model, until the results no longer improved;
- Regressor Optimization: Finally, after identifying the best features, waves and regressors, we optimized the parameters of the selected regressors.
4.3. Regressors Selection
4.4. Asymmetry Features
4.5. Features by Waves
- KNN: All features except the Spectral Entropy (SE) from the three bands, plus the alpha differential asymmetry, with all features except the third Hjorth parameter (H3). This yields a feature vector of dimension 770 for DEAP (7 features × 3 waves × 32 channels + 7 features from alpha waves × 14 asymmetry channels) and 343 for AMIGOS and DREAMER (7 features × 3 waves × 14 channels + 7 features from alpha waves × 7 asymmetry channels).
- RF: First Hjorth parameter (H1) and the Wavelet Energy (WP) from the beta and gamma waves, plus the alpha differential asymmetry from the first Hjorth parameter (H1), the Wavelet Energy (WP) and Wavelet Entropy (WE). The resulting feature vector has a dimension of 170 for DEAP (2 features × 2 waves × 32 channels + 3 features from alpha waves × 14 asymmetry channels) and 77 for AMIGOS and DREAMER (2 features × 2 waves × 14 channels + 3 features from alpha waves × 7 asymmetry channels).
4.6. Optimizing the Models
5. Experimental Evaluation
5.1. Setup
5.2. Prediction Results
5.3. Classification Results
5.3.1. Arousal and Valence Binary Classification
5.3.2. Arousal and Valence Quadrants Classification
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Alarcão, S.M.; Fonseca, M.J. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput. 2019, 10, 374–393. [Google Scholar] [CrossRef]
- Koelstra, S.; Mühl, C.; Soleymani, M.; Lee, J.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Miranda Correa, J.A.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Trans. Affect. Comput. 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Katsigiannis, S.; Ramzan, N. DREAMER: A Database for Emotion Recognition through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices. IEEE J. Biomed. Health Inform. 2018, 22, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.A.; Lazarus, R.S. Emotion and Adaptation. In Handbook of Personality: Theory and Research; The Guilford Press: New York, NY, USA, 1990; Chapter 23; pp. 609–637. [Google Scholar]
- James, W. The Physical Basis of Emotion. Psychol. Rev. 1894, 1, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Lange, C.G. The Emotions. In Psychology Classics; Williams & Wilkins (Original Work Published 1885): Baltimore, MD, USA, 1922; Chapter 2; pp. 33–90. [Google Scholar]
- Ekman, P. Basic Emotions; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1999; Chapter 3. [Google Scholar]
- Mehrabian, A.; Russell, J. An Approach to Environmental Psychology; M.I.T. Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Gunes, H.; Schuller, B. Categorical and Dimensional Affect Analysis in Continuous Input: Current Trends and Future Directions. Image Vis. Comput. 2013, 31, 120–136. [Google Scholar] [CrossRef]
- Dalgleish, T. The Emotional Brain. Nat. Rev. Neurosci. 2004, 5, 583–589. [Google Scholar] [CrossRef]
- Onton, J. High-Frequency Broadband Modulation of Electroencephalographic Spectra. Front. Hum. Neurosci. 2009, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Munoz, R.; Olivares, R.; Taramasco, C.; Villarroel, R.; Soto, R.; Barcelos, T.S.; Merino, E.; Alonso-Sánchez, M.F. Using Black Hole Algorithm to Improve EEG-Based Emotion Recognition. Comput. Intell. Neurosci. 2018, 2018, 3050214. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Ji, X. EEG-Based Classification of Emotions Using Empirical Mode Decomposition and Autoregressive Model. Multimed. Tools Appl. 2018, 77, 26697–26710. [Google Scholar] [CrossRef]
- Wang, X.W.; Nie, D.; Lu, B.L. Emotional State Classification from EEG Data Using Machine Learning Approach. Neurocomputing 2014, 129, 94–106. [Google Scholar] [CrossRef]
- Zheng, W.L.; Lu, B.L. Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Trans. Affect. Comput. 2011, 3, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Jirayucharoensak, S.; Pan-Ngum, S.; Israsena, P. EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation. Sci. World J. 2014, 2014, 627892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Han, J.; Guo, L.; Wang, J.; Patras, I. Identifying Valence and Arousal Levels via Connectivity Between EEG Channels. In Proceedings of the International Conference on Affective Computing and Intelligent Interaction (ACII), Xi’an, China, 21–24 September 2015; pp. 63–69. [Google Scholar]
- Sharma, R.; Pachori, R.B.; Sircar, P. Automated Emotion Recognition Based on Higher Order Statistics and Deep Learning Algorithm. Biomed. Signal Process. Control 2020, 58, 101867. [Google Scholar] [CrossRef]
- Aguiñaga, A.R.; Ramirez, M.A.L. Emotional States Recognition, Implementing a Low Computational Complexity Strategy. Health Inform. J. 2018, 24, 146–170. [Google Scholar] [CrossRef]
- Chen, T.; Ju, S.; Ren, F.; Fan, M.; Gu, Y. EEG Emotion Recognition Model Based on the LIBSVM Classifier. Measurement 2020, 164. [Google Scholar] [CrossRef]
- Gupta, V.; Chopda, M.D.; Pachori, R.B. Cross-Subject Emotion Recognition Using Flexible Analytic Wavelet Transform from EEG Signals. IEEE Sens. J. 2019, 19, 2266–2274. [Google Scholar] [CrossRef]
- Petrantonakis, P.C.; Hadjileontiadis, L.J. Emotion Recognition from Brain Signals Using Hybrid Adaptive Filtering and Higher Order Crossings Analysis. IEEE Trans. Affect. Comput. 2010, 1, 81–97. [Google Scholar] [CrossRef]
- Petrantonakis, P.C.; Hadjileontiadis, L.J. A Novel Emotion Elicitation Index Using Frontal Brain Asymmetry for Enhanced EEG-Based Emotion Recognition. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 737–746. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Zhao, S.; Hu, S.; Shi, Z.; Cao, Y. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition. Sensors 2016, 16, 1558. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, P.; Kohlschein, C.; Bitsch, J.Á.; Wehrle, K.; Jeschke, S. EEG-Based Automatic Emotion Recognition: Feature Extraction, Selection and Classification Methods. In Proceedings of the IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–6. [Google Scholar]
- Mehmood, R.M.; Lee, H.J. A Novel Feature Extraction Method Based on Late Positive Potential for Emotion Recognition in Human Brain Signal Patterns. Comput. Electr. Eng. 2016, 53, 444–457. [Google Scholar] [CrossRef]
- Atkinson, J.; Campos, D. Improving BCI-Based Emotion Recognition by Combining EEG Feature Selection and Kernel Classifiers. Expert Syst. Appl. 2016, 47, 35–41. [Google Scholar] [CrossRef]
- Mert, A.; Akan, A. Emotion Recognition from EEG Signals by Using Multivariate Empirical Mode Decomposition. Pattern Anal. Appl. 2018, 21, 81–89. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Frounchi, J.; Amiri, M. Wavelet-based Emotion Recognition System using EEG Signal. Neural Comput. Appl. 2017, 28, 1985–1990. [Google Scholar] [CrossRef]
- Zheng, W.L.; Zhu, J.Y.; Lu, B.L. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2019, 10, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Sourina, O.; Liu, Y. A Fractal-Based Algorithm of Emotion Recognition From Eeg Using Arousal-Valence Model. In Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, Rome, Italy, 26–29 January 2011; Volume 2, pp. 209–214. [Google Scholar]
- Lin, Y.P.; Wang, C.H.; Jung, T.P.; Wu, T.L.; Jeng, S.K.; Duann, J.R.; Chen, J.H. EEG-Based Emotion Recognition in Music Listening. IEEE Trans. Biomed. Eng. 2010, 57, 1798–1806. [Google Scholar] [CrossRef]
- Chen, J.; Hu, B.; Moore, P.; Zhang, X.; Ma, X. Electroencephalogram-based Emotion Assessment System using Ontology and Data Mining Techniques. Appl. Soft Comput. 2015, 30, 663–674. [Google Scholar] [CrossRef]
- Kim, B.H.; Jo, S. Deep Physiological Affect Network for the Recognition of Human Emotions. IEEE Trans. Affect. Comput. 2020, 11, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Ma, C.; Zhang, G.; Li, J.; Lai, Y.K.; Zhao, G.; Deng, X.; Liu, Y.J.; Wang, H. An Efficient LSTM Network for Emotion Recognition from Multichannel EEG Signals. IEEE Trans. Affect. Comput. 2020. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Zhou, H.; Zhong, N. Human Emotion Recognition with Electroencephalographic Multidimensional Features by Hybrid Deep Neural Networks. Appl. Sci. 2017, 7, 1060. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.S.; Kavuri, S.; Lee, M. ICA-Evolution Based Data Augmentation with Ensemble Deep Neural Networks Using Time and Frequency Kernels for Emotion Recognition from EEG-Data. IEEE Trans. Affect. Comput. 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Sourina, O.; Nguyen, M.K. Real-Time EEG-Based Emotion Recognition and Its Applications. In Transactions on Computational Science XII; Springer: Berlin/Heidelberg, Germany, 2011; pp. 256–277. [Google Scholar]
- Murugappan, M.; Murugappan, S. Human Emotion Recognition Through Short Time Electroencephalogram (EEG) Signals Using Fast Fourier Transform (FFT). In Proceedings of the IEEE 9th International Colloquium on Signal Processing and its Applications, Kuala Lumpur, Malaysia, 8–10 March 2013; pp. 289–294. [Google Scholar]
- Cai, J.; Chen, W.; Yin, Z. Multiple Transferable Recursive Feature Elimination Technique for Emotion Recognition Based on EEG Signals. Symmetry 2019, 11, 683. [Google Scholar] [CrossRef] [Green Version]
- Thammasan, N.; Moriyama, K.; Ichi Fukui, K.; Numao, M. Familiarity Effects in EEG-Based Emotion Recognition. Brain Inform. 2017, 4, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Alazrai, R.; Homoud, R.; Alwanni, H.; Daoud, M.I. EEG-Based Emotion Recognition using Quadratic Time-Frequency Distribution. Sensors 2018, 18, 2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Wang, X.; Li, W.; Wang, H.; Bi, Q. Research on EEG Channel Selection Method for Emotion Recognition. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 2528–2535. [Google Scholar]
- Bradley, M.M.; Lang, P.J. Measuring Emotion: The Self-Assessment Manikin and the Semantic Differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Hjorth, B. EEG Analysis Based on Time Domain Properties. Electroencephalogr. Clin. Neurophysiol. 1970, 29, 306–310. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Zhang, A.; Yang, B.; Huang, L. Feature Extraction of EEG Signals Using Power Spectral Entropy. In Proceedings of the International Conference on BioMedical Engineering and Informatics, Sanya, China, 27–30 May 2008; Volume 2, pp. 435–439. [Google Scholar]
- Subasi, A. EEG Signal Classification Using Wavelet Feature Extraction and a Mixture of Expert Model. Expert Syst. Appl. 2007, 32, 1084–1093. [Google Scholar] [CrossRef]
- Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for Artifact Detection and Removal From Scalp EEG: A Review. Neurophysiol. Clin./Clin. Neurophysiol. 2016, 46, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Zhuang, N.; Zeng, Y.; Tong, L.; Zhang, C.; Zhang, H.; Yan, B. Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain. BioMed Res. Int. 2017, 2017, 8317357. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.F.; Fan, S.Z.; Lin, Y.S.; Huang, N.E.; Yeh, J.R. Investigating Power Density and the Degree of Nonlinearity in Intrinsic Components of Anesthesia EEG by the Hilbert-Huang Transform: An Example Using Ketamine and Alfentanil. PLoS ONE 2016, 11, e0168108. [Google Scholar] [CrossRef]
- Kossaifi, J.; Tzimiropoulos, G.; Todorovic, S.; Pantic, M. AFEW-VA Database for Valence and Arousal Estimation In-the-Wild. Image Vis. Comput. 2017, 65, 23–36. [Google Scholar] [CrossRef]
- Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification: A review. In Data Classification: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2014; pp. 37–64. [Google Scholar]
- Eibe, F.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix. In Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Liu, Z.T.; Xie, Q.; Wu, M.; Cao, W.H.; Li, D.Y.; Li, S.H. Electroencephalogram Emotion Recognition Based on Empirical Mode Decomposition and Optimal Feature Selection. IEEE Trans. Cogn. Dev. Syst. 2018, 11, 517–526. [Google Scholar] [CrossRef]
- Wang, Z.; Tong, Y.; Heng, X. Phase-Locking Value Based Graph Convolutional Neural Networks for Emotion Recognition. IEEE Access 2019, 7, 93711–93722. [Google Scholar] [CrossRef]
- Liu, J.; Meng, H.; Li, M.; Zhang, F.; Qin, R.; Nandi, A.K. Emotion Detection from EEG Recordings Based on Supervised and Unsupervised Dimension Reduction. Concurr. Comput. Pract. Exp. 2018, 30, e4446. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Wang, Y.; Liu, L.; Zhang, W.; Zhang, J. Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination. Front. Neurorobot. 2017, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Ozel, P.; Akan, A.; Yilmaz, B. Synchrosqueezing Transform Based Feature Extraction from EEG Signals for Emotional State Prediction. Biomed. Signal Process. Control 2019, 52, 152–161. [Google Scholar] [CrossRef]
- Alves, N.T.; Fukusima, S.S.; Aznar-Casanova, J.A. Models of Brain Asymmetry in Emotional Processing. Psychol. Neurosci. 2008, 1, 63–66. [Google Scholar]
- Li, T.; Zhou, M. ECG Classification Using Wavelet Packet Entropy and Random Forests. Entropy 2016, 18, 285. [Google Scholar] [CrossRef]
Work | Database | Features (Brain Waves) | Classifier | Emotions (#Classes) |
---|---|---|---|---|
[17] | MANHOB-HCI | PSD, DPSA () | SVM | arousal (3); valence (3) |
[2] | DEAP | PSD, APSD () | NB | arousal (2); valence (2) |
[41] | Video (Own) | SampEn, Spectral Centroid () | KNN, PNN | disgust, happy, surprise, fear and neutral (5) |
[18] | DEAP | PSD () | DLN, SVM, NB | arousal (3); valence (3) |
[15] | Video (Own) | DPSA, WT, WE, AE, FD, HE () | SVM | positive and negative (2) |
[19] | DEAP | Pearson correlation, Phase coherence, MI () | SVM | arousal (2); valence (2) |
[16] | SEED | PSD, DE, Differential/Rational asymmetry () | KNN, LR, SVM, DBN | positive, negative and neutral (3) |
[27] | DEAP | PSD, STFT, HHS, HOC () | RF, SVM | anger, surprise, other (3) |
[29] | DEAP | Statistical, PSD, HP, FD () | SVM | arousal (2); valence (2) |
[31] | DEAP | WP, WE () | SVM, KNN | arousal (2); valence (2) |
[43] | DEAP, Music | PSD, FD, differential asymmetry () | SVM, MLP, C4.5 | arousal (2); valence (2) |
[13] | MANHOB-HCI | EMD, SampEn () | SVM | high/low valence/arousal (4) |
[14] | DEAP | EMD, AR () | SVM | high/low valence/arousal (4) |
[4] | DREAMER | Logarithmic PSD () | SVM | arousal (2); valence (2) |
[3] | AMIGOS | Logarithmic PSD, APSD () | NB | arousal (2); valence (2) |
[21] | DEAP | WP () | ANN, SVM | high/low valence/arousal (4) |
[44] | DEAP | Quadratic time-frequency distributions (Custom) | SVM | high/low valence/arousal (4) |
[23] | DEAP, SEED | Flexible Analytic WT, Rényi’s Quadratic Entropy (Custom) | SVM, RF | high/low valence/arousal (4); positive, negative and neutral (3) |
[42] | DEAP | PSD, APSD, Shannon Entropy, SE, ZCR, Statistical () | LSSVM (Least Square SVM) | joy, peace, anger and depression (4) |
[45] | DEAP | WP, WE () | KELM | high/low valence/arousal (4) |
[20] | DEAP, SEED | WT, High Order Statistics () | DLN | high/low valence/arousal (4); positive, negative and neutral (3) |
[22] | Video (Own) | LZC, WT, Cointegration Degree, EMD, AE (Custom) | SVM | arousal (2); valence (2) |
AMIGOS | DEAP | DREAMER | |
---|---|---|---|
#Videos | 16 (4 per quadrant) | 40 (10 per quadrant) | 18 (nine emotions twice) |
Type | movie extracts | music videos | film clips |
Duration | <250 s | 60 s | 65–393 s |
Physiological Signals | EEG, GSR, ECG | EEG, GSR, BVP, RESP, SKT, EOG, EMG | EEG, ECG |
Participants | 40 (13 female) | 32 (16 female) | 23 (9 female) |
Arousal | Valence | ||||||
---|---|---|---|---|---|---|---|
Wave | Regressor | PCC | MAE | RMSE | PCC | MAE | RMSE |
Alpha | AR | 0.248 | 0.205 | 0.245 | 0.172 | 0.224 | 0.264 |
DT | 0.339 | 0.194 | 0.241 | 0.263 | 0.216 | 0.261 | |
KNN (K = 1) | 0.459 | 0.158 | 0.263 | 0.417 | 0.178 | 0.290 | |
LR | 0.273 | 0.202 | 0.244 | 0.203 | 0.222 | 0.262 | |
RF | 0.517 | 0.177 | 0.219 | 0.480 | 0.197 | 0.238 | |
SVR (linear) | 0.251 | 0.200 | 0.248 | 0.232 | 0.237 | 0.242 | |
SVR (RBF) | 0.244 | 0.212 | 0.235 | 0.214 | 0.211 | 0.241 | |
Beta | AR | 0.297 | 0.201 | 0.242 | 0.229 | 0.221 | 0.261 |
DT | 0.431 | 0.180 | 0.232 | 0.404 | 0.196 | 0.249 | |
KNN (K = 1) | 0.605 | 0.118 | 0.225 | 0.588 | 0.130 | 0.244 | |
LR | 0.301 | 0.200 | 0.242 | 0.280 | 0.216 | 0.257 | |
RF | 0.643 | 0.159 | 0.199 | 0.636 | 0.172 | 0.213 | |
SVR (linear) | 0.273 | 0.198 | 0.247 | 0.259 | 0.225 | 0.243 | |
SVR (RBF) | 0.260 | 0.215 | 0.229 | 0.241 | 0.226 | 0.239 | |
Gamma | AR | 0.297 | 0.201 | 0.242 | 0.256 | 0.219 | 0.259 |
DT | 0.472 | 0.173 | 0.227 | 0.486 | 0.183 | 0.237 | |
KNN (K = 1) | 0.409 | 0.174 | 0.275 | 0.387 | 0.191 | 0.297 | |
LR | 0.247 | 0.203 | 0.246 | 0.255 | 0.218 | 0.259 | |
RF | 0.669 | 0.153 | 0.194 | 0.667 | 0.164 | 0.205 | |
SVR (linear) | 0.218 | 0.202 | 0.251 | 0.211 | 0.218 | 0.265 | |
SVR (RBF) | 0.213 | 0.203 | 0.249 | 0.176 | 0.221 | 0.264 |
Arousal | Valence | |||||||
---|---|---|---|---|---|---|---|---|
Reg. | Asymmetry | Wave | PCC | MAE | RMSE | PCC | MAE | RMSE |
KNN | Rational | Alpha | 0.410 | 0.175 | 0.275 | 0.366 | 0.196 | 0.302 |
Beta | 0.558 | 0.132 | 0.238 | 0.550 | 0.144 | 0.255 | ||
Gamma | 0.447 | 0.165 | 0.266 | 0.448 | 0.177 | 0.283 | ||
Differential | Alpha | 0.411 | 0.182 | 0.275 | 0.739 | 0.125 | 0.191 | |
Beta | 0.338 | 0.195 | 0.290 | 0.337 | 0.209 | 0.308 | ||
Gamma | 0.271 | 0.212 | 0.305 | 0.279 | 0.227 | 0.322 | ||
Both | Alpha | 0.472 | 0.162 | 0.260 | 0.672 | 0.134 | 0.215 | |
Beta | 0.530 | 0.141 | 0.245 | 0.525 | 0.152 | 0.262 | ||
Gamma | 0.422 | 0.172 | 0.271 | 0.423 | 0.185 | 0.289 | ||
RF | Rational | Alpha | 0.516 | 0.176 | 0.218 | 0.481 | 0.196 | 0.237 |
Beta | 0.681 | 0.151 | 0.191 | 0.679 | 0.162 | 0.202 | ||
Gamma | 0.694 | 0.147 | 0.188 | 0.694 | 0.157 | 0.194 | ||
Differential | Alpha | 0.610 | 0.166 | 0.205 | 0.862 | 0.120 | 0.153 | |
Beta | 0.674 | 0.151 | 0.192 | 0.672 | 0.162 | 0.203 | ||
Gamma | 0.689 | 0.148 | 0.189 | 0.685 | 0.158 | 0.200 | ||
Both | Alpha | 0.586 | 0.169 | 0.209 | 0.812 | 0.141 | 0.176 | |
Beta | 0.680 | 0.150 | 0.191 | 0.682 | 0.161 | 0.202 | ||
Gamma | 0.696 | 0.146 | 0.187 | 0.694 | 0.156 | 0.198 |
Arousal | Valence | ||||||
---|---|---|---|---|---|---|---|
Reg. | Waves & Features | PCC | MAE | RMSE | PCC | MAE | RMSE |
KNN | 0.505 | 0.147 | 0.252 | 0.451 | 0.167 | 0.281 | |
0.621 | 0.114 | 0.221 | 0.597 | 0.126 | 0.241 | ||
0.535 | 0.139 | 0.244 | 0.528 | 0.149 | 0.260 | ||
0.689 | 0.093 | 0.199 | 0.658 | 0.105 | 0.221 | ||
0.640 | 0.109 | 0.215 | 0.603 | 0.122 | 0.239 | ||
0.672 | 0.099 | 0.205 | 0.652 | 0.110 | 0.224 | ||
0.722 | 0.084 | 0.189 | 0.691 | 0.095 | 0.211 | ||
0.430 | 0.178 | 0.270 | 0.774 | 0.115 | 0.178 | ||
0.743 | 0.078 | 0.182 | 0.750 | 0.082 | 0.189 | ||
RF | 0.543 | 0.173 | 0.215 | 0.505 | 0.193 | 0.234 | |
0.669 | 0.150 | 0.192 | 0.661 | 0.161 | 0.204 | ||
0.719 | 0.138 | 0.180 | 0.717 | 0.145 | 0.190 | ||
0.722 | 0.138 | 0.180 | 0.719 | 0.147 | 0.190 | ||
0.642 | 0.159 | 0.198 | 0.901 | 0.097 | 0.126 | ||
0.748 | 0.136 | 0.175 | 0.845 | 0.119 | 0.155 |
Arousal | Valence | ||||||
---|---|---|---|---|---|---|---|
Model | Par. | PCC | MAE | RMSE | PCC | MAE | RMSE |
KNN | K = 1 | 0.794 | 0.062 | 0.163 | 0.795 | 0.066 | 0.172 |
K = 3 | 0.725 | 0.120 | 0.175 | 0.725 | 0.128 | 0.185 | |
K = 5 | 0.684 | 0.137 | 0.185 | 0.689 | 0.146 | 0.194 | |
K = 7 | 0.655 | 0.147 | 0.192 | 0.663 | 0.156 | 0.201 | |
K = 11 | 0.622 | 0.156 | 0.199 | 0.633 | 0.166 | 0.208 | |
K = 21 | 0.579 | 0.166 | 0.208 | 0.595 | 0.176 | 0.217 | |
RF | T = 50 | 0.740 | 0.137 | 0.176 | 0.839 | 0.119 | 0.156 |
T = 100 | 0.748 | 0.136 | 0.175 | 0.845 | 0.119 | 0.155 | |
T = 500 | 0.755 | 0.135 | 0.174 | 0.852 | 0.118 | 0.153 | |
T = 750 | 0.755 | 0.135 | 0.174 | 0.852 | 0.118 | 0.153 | |
T = 1000 | 0.756 | 0.135 | 0.174 | 0.853 | 0.118 | 0.153 |
Arousal | Valence | ||||||
---|---|---|---|---|---|---|---|
Reg. | Dataset | PCC | MAE | RMSE | PCC | MAE | RMSE |
KNN | DEAP | 0.794 | 0.062 | 0.163 | 0.795 | 0.066 | 0.172 |
AMIGOS | 0.830 | 0.045 | 0.129 | 0.808 | 0.063 | 0.175 | |
DREAMER | 0.806 | 0.058 | 0.165 | 0.812 | 0.076 | 0.213 | |
RF | DEAP | 0.755 | 0.135 | 0.174 | 0.852 | 0.118 | 0.153 |
AMIGOS | 0.789 | 0.115 | 0.148 | 0.769 | 0.158 | 0.195 | |
DREAMER | 0.864 | 0.099 | 0.142 | 0.870 | 0.128 | 0.181 |
DEAP | AMIGOS | DREAMER | ||||
---|---|---|---|---|---|---|
Arousal | Valence | Arousal | Valence | Arousal | Valence | |
KNN | 89.84 | 89.83 | 92.46 | 90.69 | 93.72 | 92.16 |
RF | 80.62 | 85.91 | 85.98 | 83.00 | 93.79 | 93.65 |
Year | Method | Arousal | Valence |
---|---|---|---|
2020 | Deep Physiological Affect Network (Convolutional LSTM with a temporal loss function) [36] | 79.03 | 78.72 |
2020 | Attention-based LSTM with Domain Discriminator [37] | 72.97 | 69.06 |
2019 | Spectrum centroid and Lempel–Ziv complexity from EMD; KNN [58] | 86.46 | 84.90 |
2019 | Ensemble of CNNs with LSTM model [39] | —– | 84.92 |
2019 | Phase-locking value-based graph CNN [59] | 77.03 | 73.31 |
2018 | Time, frequency and connectivity features combined with mRMR and PCA for features reduction; Random Forest [60] | 74.30 | 77.20 |
2017 | Transfer recursive feature elimination; least square SVM [61] | 78.67 | 78.75 |
2012 | EEG Power spectral features + Asymmetry, from four bands; naive Bayes classifier [2] (DEAP paper) | 62.00 | 57.60 |
2021 | Proposed model | 89.84 | 89.83 |
; KNN, K = 1 |
Year | Method | Accuracy |
---|---|---|
2020 | Nonlinear higher order statistics and deep learning algorithm [20] | 82.01 |
2019 | Wavelet energy and entropy; Extreme Learning Machine with kernel [45] | 80.83 |
2019 | Time-frequency analysis using multivariate synchrosqueezing transform; Gaussian SVM [62] | 76.30 |
2018 | Wavelet energy; SVM classifier [21] | 81.97 |
2018 | Flexible analytic wavelet transform + information potential to extract features; Random Forest [23] | 71.43 |
2017 | Hybrid deep learning neural network (CNN + LSTM) [38] | 75.21 |
2016 | Discriminative Graph regularized Extreme Learning Machine with differential entropy features [32] | 69.67 |
2021 | Proposed model | 84.40 |
; KNN, K = 1 |
Short Biography of Authors
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvão, F.; Alarcão, S.M.; Fonseca, M.J. Predicting Exact Valence and Arousal Values from EEG. Sensors 2021, 21, 3414. https://doi.org/10.3390/s21103414
Galvão F, Alarcão SM, Fonseca MJ. Predicting Exact Valence and Arousal Values from EEG. Sensors. 2021; 21(10):3414. https://doi.org/10.3390/s21103414
Chicago/Turabian StyleGalvão, Filipe, Soraia M. Alarcão, and Manuel J. Fonseca. 2021. "Predicting Exact Valence and Arousal Values from EEG" Sensors 21, no. 10: 3414. https://doi.org/10.3390/s21103414
APA StyleGalvão, F., Alarcão, S. M., & Fonseca, M. J. (2021). Predicting Exact Valence and Arousal Values from EEG. Sensors, 21(10), 3414. https://doi.org/10.3390/s21103414