Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Participants
2.3. Data Collection
2.4. Laboratory-Based Biomechanical Analysis (Motion Capture and Force Plates)
2.5. Inertial Measurement Unit (IMU)-Based Biomechanical Analysis
2.5.1. Region of Interest
- We corrected all right limb IMUs to mirror the axes of the left limb IMUs. We applied a second-order, 1.5 Hz low-pass Butterworth filter [36] on the thigh high-g accelerometer time-series for all three axes and then calculated the resultant acceleration. We found the two most prominent [37] local minima of the resultant acceleration and defined the initial ROI as the region between these two points. An example trial can be seen in Figure 3B.
- To further refine the ROI, we used the selected region from step one, then determined “start” and “end” points within this region. Since optimal filtering parameters of inertial sensors during landing tasks have not been established, we explored a range of low pass filtering parameters from 15 Hz [28] up to unfiltered. Ultimately, we elected to apply a second-order, 50 Hz low-pass Butterworth filter on all IMU time-series data. This filter allowed for reliable feature extraction while visually appearing to reduce high frequency noise. The start point occurred at the local minimum directly preceding when the shank x (aligned axially on the shank) high-g accelerometer first exceeded 20 g’s for five consecutive frames (4 ms). The end point occurred after the start point, when the thigh z (aligned with the medial-lateral axis of the thigh) gyroscope exceeded 0 rad/sec for at least 50 frames (40 ms) forward, indicating angular velocity of the thigh towards relative extension. All trials were visually inspected with overlaid vGRF and KFA to ensure these steps yielded an appropriate region. A visualization of these steps for a representative limb-trial is shown in Figure 3C,D.
2.5.2. Feature Engineering
2.5.3. Algorithm Development
2.5.4. Algorithm Evaluation
3. Results
4. Discussion
4.1. Overview of Findings
4.2. Absolute vs. Relative Measures of Biomechanical Variables
4.3. Comparing and Contrasting Double and Single Limb Landings
4.4. Benefits and Drawbacks of Single-Feature vs. Multiple-Feature Solutions
- We recommend that the use of single features is ideally suited for feedback interventions, and we advocate for future interventional research to demonstrate the effectiveness of manipulating knee-specific biomechanics post-ACLR.
- We recommend the use of multiple feature models for improved fidelity in objectively assessing biomechanics during landing tasks outside a laboratory setting.
4.5. Machine Learning Approaches
4.6. Variability of Landing Strategy
4.7. Additional Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Feature Name | Abbreviation |
---|---|
Max | max |
Time to max | ttmax |
Max prominence | pmax |
Width of max | wmax |
Min | min |
Time to min | ttmin |
Min prominence 1 | pmin |
Width of min | wmin |
Max-min difference | mmdiff |
Max-min time difference | mmtdiff |
Start value | start |
Stop value | stop |
Standard deviation | std |
Area under the curve | auc |
Response | Shank | Thigh |
---|---|---|
vGRF | Accel R: std | Accel R: std |
KFA | Accel Z: std | Gyro Z: auc |
KEM | Accel X: std | Accel Y: std |
KPA | Accel X: std | Accel Y: std |
Response | Shank Accel | Thigh Accel | Other |
---|---|---|---|
vGRF | X: start, auc Y: max, pmax Z: wmax, min R: stop, std, auc | X: auc Y: start, ttmax, pmin, auc Z: start, pmax, wmin, auc R: start, stop, mmdiff | |
KFA | X: start, std, min, pmin, mmtdiff, auc Y: start Z: std, ttmin, mmdiff R: start, stop | X: wmin, auc Y: min, wmin, auc Z: start, pmin, mmdiff R: auc | Range |
KEM | X: start, ttmax Z: start, w max R: std, max, ttmax, min | X: std, wmax, mmdiff, auc Y: start, wmax, auc Z: wmax, pmax, mmdiff, mmtdiff, auc R: start, ttmax, wmin, auc | |
KPA | X: min, ttmin, pmin, mmtdiff Y: ttmax, wmin, auc Z: wmax, pmax, mmtdiff R: std, max, wmax | X: auc Y: start, std, max, pmax, pmin Z: start, std, ttmax, pmax, wmin, auc R: start, wmax, pmax, ttmin, pmin |
Shank | Thigh | ||||
---|---|---|---|---|---|
Response | Accel | Gyro | Accel | Gyro | Other |
vGRF | X: start, ttmin, auc Y: std, min R: start, std, ttmax | Y: start, std, pmax, ttmin Z: ttmin R: start, max, pmax | Y: pmin Z: wmin, pmin, auc R: stop | X: ttmax, wmax Y: mmdiff, auc Z: auc R: start | |
KFA | X: std, mmdiff, mmtdiff, auc Y: mmtdiff Z: ttmax R: start, stop | X: wmax, pmax, auc Y: std, wmax R: start, std, min | X: std, mmdiff Y: start, pmax, auc Z: start, std, auc R: wmax, auc | X: std, ttmax, auc Y: start, auc Z: start, std, wmax, pmax, pmin, auc R: start, mmtdiff | Range |
KEM | X: std Y: ttmax Z: start, mmdiff R: std, ttmax, pmax, min | X: wmax Z: std, min R: start, ttmax | X: wmax, pmax, auc Y: start, wmax, auc Z: mmdiff R: ttmax, wmax, wmin | X: std, max Z: std, mmdiff R: ttmax, wmax, wmin, pmin | |
KPA | X: std, ttmax Y: wmin Z: wmax, ttmin, pmin, mmdiff R: std, pmax | X: min Z: stop, std R: start | X: ttmax, auc Y: start, std, max, pmax Z: std, ttmax, pmax, wmin, pmin R: start, ttmax, ttmin, pmin | X: std, mmdiff Y: std Z: max, wmax |
Appendix B
Model RMSE (%) | |||||
---|---|---|---|---|---|
LSI (%) | Single Feature | Multiple Feature | |||
Mean ± SD | Shank | Thigh | Accel | Accel + Gyro | |
vGRF | 89.8 ± 19.5 | 15.2 | 17.9 | 14.7 | 14.3 |
KFA | 102.2 ± 4.1 | 4.1 | 4.2 | 4.0 | 3.5 |
KEM | 92.4 ± 16.8 | 15.8 | 16.3 | 13.9 | 12.7 |
KPA | 92.3 ± 23.2 | 21.9 | 20.2 | 17.0 | 15.8 |
References
- Lynch, A.D.; Logerstedt, D.S.; Grindem, H.; Eitzen, I.; Hicks, G.E.; Axe, M.J.; Engebretsen, L.; Risberg, M.A.; Snyder-Mackler, L. Consensus criteria for defining ‘successful outcome’ after ACL injury and reconstruction: A Delaware-Oslo ACL cohort investigation. Br. J. Sports Med. 2015, 49, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Barber-Westin, S.; Noyes, F.R. One in 5 Athletes Sustain Reinjury Upon Return to High-Risk Sports After ACL Reconstruction: A Systematic Review in 1239 Athletes Younger Than 20 Years. Sports Health 2020, 12, 587–597. [Google Scholar] [CrossRef]
- Paterno, M.V.; Rauh, M.J.; Schmitt, L.C.; Ford, K.R.; Hewett, T.E. Incidence of Second ACL Injuries 2 Years After Primary ACL Reconstruction and Return to Sport. Am. J. Sports Med. 2014, 42, 1567–1573. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, A.J.; Grandhi, R.K.; Schneider, D.K.; Stanfield, D.; Webster, K.E.; Myer, G.D. Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2016, 44, 1861–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristiani, R.; Engström, B.; Edman, G.; Forssblad, M.; Stålman, A. Revision anterior cruciate ligament reconstruction restores knee laxity but shows inferior functional knee outcome compared with primary reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G.; Musco, P.; Caine, S.; Howe, L. Lower Limb Asymmetry After Anterior Cruciate Ligament Reconstruction in Adolescent Athletes: A Systematic Review and Meta-Analysis. J. Athl. Train. 2020, 55, 12–15. [Google Scholar] [CrossRef]
- Lepley, A.S.; Kuenze, C.M. Hip and Knee Kinematics and Kinetics During Landing Tasks After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. J. Athl. Train. 2018, 53, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Kotsifaki, A.; Korakakis, V.; Whiteley, R.; Van Rossom, S.; Jonkers, I. Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Burgi, C.R.; Peters, S.; Ardern, C.L.; Magill, J.R.; Gomez, C.D.; Sylvain, J.; Reiman, M.P. Which criteria are used to clear patients to return to sport after primary ACL reconstruction? A scoping review. Br. J. Sports Med. 2019, 53, 1154–1161. [Google Scholar] [CrossRef]
- Wellsandt, E.; Failla, M.J.; Snyder-Mackler, L. Limb Symmetry Indexes Can Overestimate Knee Function After Anterior Cruciate Ligament Injury. J. Orthop. Sports Phys. Ther. 2017, 47, 334–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wren, T.A.L.; Mueske, N.M.; Brophy, C.H.; Pace, J.L.; Katzel, M.J.; Edison, B.R.; Vandenberg, C.D.; Zaslow, T.L. Hop Distance Symmetry Does Not Indicate Normal Landing Biomechanics in Adolescent Athletes with Recent Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2018, 48, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical Measures during Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury after Anterior Cruciate Ligament Reconstruction and Return to Sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef]
- King, E.; Richter, C.; Daniels, K.A.; Franklyn-Miller, A.; Falvey, E.; Myer, G.D.; Jackson, M.; Moran, R.; Strike, S. Biomechanical but Not Strength or Performance Measures Differentiate Male Athletes Who Experience ACL Reinjury on Return to Level 1 Sports. Am. J. Sports Med. 2021, 49, 918–927. [Google Scholar] [CrossRef] [PubMed]
- King, E.; Richter, C.; Daniels, K.A.; Franklyn-Miller, A.; Falvey, E.; Myer, G.D.; Jackson, M.; Moran, R.; Strike, S. Can Biomechanical Testing After Anterior Cruciate Ligament Reconstruction Identify Athletes at Risk for Subsequent ACL Injury to the Contralateral Uninjured Limb? Am. J. Sports Med. 2021, 49, 609–619. [Google Scholar] [CrossRef]
- Nagelli, C.V.; Wordeman, S.C.; Di Stasi, S.; Hoffman, J.; Marulli, T.; Hewett, T.E. Neuromuscular Training Improves Biomechanical Deficits at the Knee in Anterior Cruciate Ligament–Reconstructed Athletes. Clin. J. Sport Med. 2019. [Google Scholar] [CrossRef]
- Johnson, P.J.L.; Capin, P.J.J.; Arundale, P.A.J.; Zarzycki, P.R.; Smith, P.A.H.; Snyder-Mackler, P.L. A Secondary Injury Prevention Program May Decrease Contralateral Anterior Cruciate Ligament Injuries in Female Athletes: 2-Year Injury Rates in the ACL-SPORTS Randomized Controlled Trial. J. Orthop. Sports Phys. Ther. 2020, 50, 523–530. [Google Scholar] [CrossRef]
- Hewett, T.E.; Di Stasi, S.L.; Myer, G.D. Current Concepts for Injury Prevention in Athletes After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2012, 41, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willy, R.W. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys. Ther. Sport 2018, 29, 26–33. [Google Scholar] [CrossRef]
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J. Biomech. 2018, 81, 1–11. [Google Scholar] [CrossRef]
- Hennig, E.M.; LaFortune, M.A. Relationships between Ground Reaction Force and Tibial Bone Acceleration Parameters. Int. J. Sport Biomech. 1991, 7, 303–309. [Google Scholar] [CrossRef]
- Milner, C.E.; Ferber, R.; Pollard, C.D.; Hamill, J.; Davis, I.S. Biomechanical Factors Associated with Tibial Stress Fracture in Female Runners. Med. Sci. Sports Exerc. 2006, 38, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, B.; Butler, R.J.; Garrett, W.E.; Queen, R.M. Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction. Scand. J. Med. Sci. Sports 2013, 24, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Matijevich, E.S.; Branscombe, L.M.; Scott, L.R.; Zelik, K.E. Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech. PLoS ONE 2019, 14, e0210000. [Google Scholar] [CrossRef] [Green Version]
- Morgan, A.M.; O’Connor, K.M. Evaluation of an accelerometer to assess knee mechanics during a drop landing. J. Biomech. 2019, 86, 125–131. [Google Scholar] [CrossRef]
- Pratt, K.A.; Sigward, S.M. Detection of Knee Power Deficits following ACL Reconstruction Using Wearable Sensors. J. Orthop. Sport Phys. Ther. 2018. Available online: www.jospt.org (accessed on 24 October 2018).
- Pratt, K.A.; Sigward, S.M. Inertial Sensor Angular Velocities Reflect Dynamic Knee Loading during Single Limb Loading in Individuals Following Anterior Cruciate Ligament Reconstruction. Sensors 2018, 18, 3460. [Google Scholar] [CrossRef] [Green Version]
- Stetter, B.J.; Krafft, F.C.; Ringhof, S.; Stein, T.; Sell, S. A Machine Learning and Wearable Sensor Based Approach to Estimate External Knee Flexion and Adduction Moments During Various Locomotion Tasks. Front Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors 2019, 19, 3690. [Google Scholar] [CrossRef] [Green Version]
- Gholami, M.; Napier, C.; Menon, C. Estimating Lower Extremity Running Gait Kinematics with a Single Accelerometer: A Deep Learning Approach. Sensors 2020, 20, 2939. [Google Scholar] [CrossRef] [PubMed]
- Gokeler, A.; Welling, W.; Zaffagnini, S.; Seil, R.; Padua, D. Development of a test battery to enhance safe return to sports after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padua, D.A.; Marshall, S.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E.; Beutler, A.I. The Landing Error Scoring System (LESS) Is a Valid and Reliable Clinical Assessment Tool of Jump-Landing Biomechanics. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef]
- Mauntel, T.C.; Padua, D.A.; Stanley, L.E.; Frank, B.S.; Distefano, L.J.; Peck, K.Y.; Cameron, K.; Marshall, S.W. Automated Quantification of the Landing Error Scoring System with a Markerless Motion-Capture System. J. Athl. Train. 2017, 52, 1002–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.; Gabriel, D.; Noble, L.; An, K.-N. Estimate of the Optimum Cutoff Frequency for the Butterworth Low-Pass Digital Filter. J. Appl. Biomech. 1999, 15, 318–329. [Google Scholar] [CrossRef]
- Kristianslund, E.; Krosshaug, T.; Bogert, A.J.V.D. Effect of low pass filtering on joint moments from inverse dynamics: Implications for injury prevention. J. Biomech. 2012, 45, 666–671. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.L.; Pedersen, D.R.; Brand, R.A. A comparison of the accuracy of several hip center location prediction methods. J. Biomech. 1990, 23, 617–621. [Google Scholar] [CrossRef]
- Brønd, J.C.; Andersen, L.B.; Arvidsson, D. Generating ActiGraph Counts from Raw Acceleration Recorded by an Alternative Monitor. Med. Sci. Sports Exerc. 2017, 49, 2351–2360. [Google Scholar] [CrossRef]
- Prominence-MATLAB & Simulink. Available online: https://www.mathworks.com/help/signal/ug/prominence.html (accessed on 26 February 2021).
- Babyak, M.A. What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models. Psychosom. Med. 2004, 66, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Matijevich, E.S.; Volgyesi, P.; Zelik, K.E. A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling. Sensors 2021, 21, 340. [Google Scholar] [CrossRef]
- White, M.M.S.; Horton, M.W.Z.; Burland, J.P.; Seeley, M.K.; Lepley, L.K. The Utility of Functional Data Analyses to Reveal Between-Limbs Asymmetries in Those with a History of Anterior Cruciate Ligament Reconstruction. J. Athl. Train. 2021, 56, 272–279. [Google Scholar] [CrossRef]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Hewett, T.E. Effects of Sex on Compensatory Landing Strategies Upon Return to Sport After Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2011, 41, 553–559. [Google Scholar] [CrossRef]
- Delahunt, E.; Sweeney, L.; Chawke, M.; Kelleher, J.; Murphy, K.; Patterson, M.; Prendiville, A.; Patterson, M. Lower limb kinematic alterations during drop vertical jumps in female athletes who have undergone anterior cruciate ligament reconstruction. J. Orthop. Res. 2011, 30, 72–78. [Google Scholar] [CrossRef]
- Goerger, B.M.; Marshall, S.; Beutler, A.I.; Blackburn, J.T.; Wilckens, J.H.; Padua, D. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: The JUMP-ACL study. Br. J. Sports Med. 2014, 49, 188–195. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 705–729. [Google Scholar] [CrossRef] [PubMed]
- Dowling, A.V.; Favre, J.; Andriacchi, T.P. Inertial Sensor-Based Feedback Can Reduce Key Risk Metrics for Anterior Cruciate Ligament Injury During Jump Landings. Am. J. Sports Med. 2012, 40, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Crowell, H.P.; Milner, C.E.; Hamill, J.; Davis, I.S. Reducing Impact Loading During Running with the Use of Real-Time Visual Feedback. J. Orthop. Sports Phys. Ther. 2010, 40, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Crowell, H.P.; Davis, I.S. Gait retraining to reduce lower extremity loading in runners. Clin. Biomech. 2011, 26, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Clansey, A.C.; Hanlon, M.; Wallace, E.; Nevill, A.; Lake, M.J. Influence of Tibial Shock Feedback Training on Impact Loading and Running Economy. Med. Sci. Sports Exerc. 2014, 46, 973–981. [Google Scholar] [CrossRef] [PubMed]
Category | Variable Name | Calculation |
---|---|---|
Max | Max | Maximum value |
Time to max | Frame number at maximum value | |
Max prominence 1 | Height of maximum relative to surrounding time-series | |
Width of max | Width (number of frames) at half-prominence 1 | |
Min | Min | Minimum value |
Time to min | Frame number at minimum value | |
Min prominence 1 | Height of minimum relative to surrounding time-series | |
Width of min | Width (number of frames) at half-prominence 1 | |
Max-min | Max-min difference | Maximum value–minimum value |
Max-min time difference | Time to max–time to min | |
Other | Start value | Value at start of ROI |
Stop value | Value at end of ROI | |
Standard deviation | Standard deviation of all elements | |
Area under the curve | Approximate integral using trapezoidal numerical integration |
Model | |||||
---|---|---|---|---|---|
Single Feature | Multiple Feature | ||||
Shank | Thigh | Accel | Accel + Gyro | ||
Model input parameters | Sensor location(s) | Shank | Thigh | Shank and thigh | |
Signals | Accel, gyro | Accel | Accel, gyro | ||
Potential features | 113 | 113 | 113 | 225 | |
Model training and selection | Model used | Simple linear regression | Stepwise linear regression | ||
Hyperparameter optimization | No | Yes | |||
# of selected features | 1 | Up to 41 | |||
Model selection | Highest R2 | High R2, low # of features | |||
Cross-validation | No | Yes, k-fold, n = 10 | |||
Performance evaluation | Goodness of fit | R2 | R2 | ||
Error | RMSE, nRMSE | RMSE, nRMSE |
Variable | N | Mean ± SD | Range [Min, Max] | Mean within- Participant SD | Mean between-Participant SD |
---|---|---|---|---|---|
vGRF (xBW) | 416 | 2.07 ± 0.57 | [0.96, 4.63] | 0.32 | 0.48 |
KFA (deg) | 416 | 93.9 ± 14.4 | [58.9, 136.9] | 5.0 | 13.8 |
KEM (xBW xHT) | 416 | 0.262 ± 0.046 | [0.138, 0.402] | 0.033 | 0.031 |
KPA (xBW xHT) | 413 | 2.01 ± 0.48 | [0.87, 3.72] | 0.33 | 0.38 |
Model | Cross-Validation | ||||||
---|---|---|---|---|---|---|---|
Single Feature | Multiple Feature | Multiple Feature | |||||
Shank | Thigh | Accel | Accel + Gyro | Accel | Accel + Gyro | ||
vGRF (xBW) | Features (#) | 1 | 1 | 21 | 27 | ||
R2 | 0.58 | 0.36 | 0.82 * | 0.87 * | 0.78 ± 0.01 | 0.83 ± 0.01 | |
RMSE | 0.37 | 0.46 | 0.24 | 0.21 | 0.25 ± 0.003 | 0.22 ± 0.002 | |
nRMSE (%) | 10.0 | 12.5 | 6.5 | 5.7 | 6.8 + 0.08 | 6.0 ± 0.05 | |
KFA (deg) | Features (#) | 1 | 1 | 23 | 41 | ||
R2 | 0.24 | 0.60 | 0.83 * | 0.94 * | 0.80 ± 0.01 | 0.92 ± 0.003 | |
RMSE | 12.6 | 9.1 | 6.1 | 3.6 | 6.2 ± 0.05 | 3.8 ± 0.04 | |
nRMSE (%) | 16.2 | 11.7 | 7.8 | 4.6 | 7.9 ± 0.06 | 4.9 ± 0.05 | |
KEM (xBW xHT) | Features (#) | 1 | 1 | 24 | 31 | ||
R2 | 0.17 | 0.16 | 0.59 | 0.68 | 0.50 ± 0.01 | 0.60 ± 0.01 | |
RMSE | 0.042 | 0.042 | 0.030 | 0.027 | 0.031 ± 0.0002 | 0.028 ± 0.0002 | |
nRMSE (%) | 15.9 | 15.9 | 11.4 | 10.2 | 11.7 ± 0.07 | 10.6 ± 0.07 | |
KPA (xBW xHT) | Features (#) | 1 | 1 | 30 | 33 | ||
R2 | 0.27 | 0.34 | 0.63 | 0.72 | 0.53 ± 0.02 | 0.64 ± 0.01 | |
RMSE | 0.41 | 0.39 | 0.30 | 0.26 | 0.32 ± 0.003 | 0.27 ± 0.003 | |
nRMSE (%) | 14.3 | 13.7 | 10.5 | 9.1 | 11.2 ± 0.1 | 9.5 ± 0.1 |
Prior Research | Current Models (RMSE) | |||||||
---|---|---|---|---|---|---|---|---|
Single Feature | Multiple Feature | |||||||
Variable | Reference | ACLR Involved | Healthy Control | Diff. | Shank | Thigh | Accel | Accel + Gyro |
vGRF | Paterno et al. [41] | 1.77 | 2.01 | 0.24 | 0.37 | 0.46 | 0.24 | 0.21 |
KFA | Delahunt et al. [42] | 62.0 | 69.5 | 7.5 | 12.6 | 9.1 | 6.1 | 3.6 |
KEM | Goerger et al. [43] | 0.169 | 0.204 | 0.035 | 0.042 | 0.042 | 0.030 | 0.027 |
KPA | White et al. [40] | 1.65 | 2.01 | 0.36 | 0.41 | 0.39 | 0.30 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaaban, C.R.; Berry, N.T.; Armitano-Lago, C.; Kiefer, A.W.; Mazzoleni, M.J.; Padua, D.A. Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task. Sensors 2021, 21, 4383. https://doi.org/10.3390/s21134383
Chaaban CR, Berry NT, Armitano-Lago C, Kiefer AW, Mazzoleni MJ, Padua DA. Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task. Sensors. 2021; 21(13):4383. https://doi.org/10.3390/s21134383
Chicago/Turabian StyleChaaban, Courtney R., Nathaniel T. Berry, Cortney Armitano-Lago, Adam W. Kiefer, Michael J. Mazzoleni, and Darin A. Padua. 2021. "Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task" Sensors 21, no. 13: 4383. https://doi.org/10.3390/s21134383
APA StyleChaaban, C. R., Berry, N. T., Armitano-Lago, C., Kiefer, A. W., Mazzoleni, M. J., & Padua, D. A. (2021). Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task. Sensors, 21(13), 4383. https://doi.org/10.3390/s21134383