The Effects of Knee Flexion on Tennis Serve Performance of Intermediate Level Tennis Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Processing and Reduction
2.4. Reliability
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Tennis Serve Performance and Knee Extension Velocity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Myers, N.L.; Kibler, W.B.; Lamborn, L.; Smith, B.J.; English, T.; Jacobs, C.; Uhl, T.L. Reliability and validity of a biomechanically based analysis method for the tennis serve. Int. J. Sports Phys. Ther. 2017, 12, 437. [Google Scholar]
- Dossena, F.; Rossi, C.; La Torre, A.; Bonato, M. The role of lower limbs during tennis serve. J. Sports Med. Phys. Fit. 2018, 58, 210–215. [Google Scholar] [CrossRef]
- Bonato, M.; Maggioni, M.A.; Rossi, C.; Rampichini, S.; La Torre, A.; Merati, G. Relationship between anthropometric or functional characteristics and maximal serve velocity in professional tennis players. J. Sports Med. Phys. Fit. 2015, 55, 1157–1165. [Google Scholar]
- Hayes, M.J.; Spits, D.R.; Watts, D.G.; Kelly, V.G. Relationship between tennis serve velocity and select performance measures. J. Strength Cond. Res. 2021, 35, 190–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, B.; Fleisig, G.; Nicholls, R.; Escamilla, R. Technique effects on upper limb loading in the tennis serve. J. Sci. Med. Sport 2003, 6, 76–87. [Google Scholar] [CrossRef]
- Sgro, F.; Mango, P.; Nicolosi, S.; Schembri, R.; Lipoma, M. Analysis of knee joint motion in tennis flat serve using low-cost technological approach. In Proceedings of the 2013 International Workshop on Computer Science in Sports (IWCSS), Wuhan, China, 1–2 August 2013; pp. 250–254. [Google Scholar] [CrossRef]
- Girard, O.; Micallef, J.; Millet, G. Influence of restricted knee motion during the flat first serve in tennis. J. Strength Cond. Res. 2007, 21, 950–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, O.; Micallef, J.P.; Millet, G.P. Lower-limb activities during the power serve in tennis: Effects of performance level. Med. Sci. Sports Exerc. 2005, 37, 1021–1029. [Google Scholar]
- Brody, H. Unforced errors and error reduction in tennis. Br. J. Sports Med. 2006, 40, 397–400. [Google Scholar] [CrossRef]
- Tanabe, S.; Ito, A. A three-dimensional analysis of the contributions of upper limb joint movements to horizontal racket head velocity at ball impact during tennis serving. Sports Biomech. 2007, 6, 418–433. [Google Scholar] [CrossRef]
- Elliott, B.; Marshall, R.N.; Noffal, G. Contributions of upper limb segment rotations during the power serve in tennis. J. Appl. Biomech. 1995, 13, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.; Elliott, B.; Alderson, J. Lower-limb coordination and shoulder joint mechanics in the tennis serve. Med. Sci. Sports Exerc. 2008, 40, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Kibler, B.W. Biomechanical analysis of the shoulder during tennis activities. Clin. Sports Med. 1995, 14, 79–85. [Google Scholar] [CrossRef]
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef] [Green Version]
- Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors 2019, 19, 3690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapinski, M.; Brum Medeiros, C.; Moxley Scarborough, D.; Berkson, E.; Gill, T.J.; Kepple, T.; Paradiso, J.A. A Wide-Range, Wireless Wearable Inertial Motion Sensing System for Capturing Fast Athletic Biomechanics in Overhead Pitching. Sensors 2019, 19, 3637. [Google Scholar] [CrossRef] [Green Version]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, J.J.A., Jr.; Vieira, M.E.M.; Pires, M.B.; Stevan, S.L., Jr. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications. Sensors 2016, 16, 1569. [Google Scholar] [CrossRef]
- Fantozzi, S.; Giovanardi, A.; Magalhães, F.A.; Di Michele, R.; Cortesi, M.; Gatta, G. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. J. Sports Sci. 2016, 34, 1073–1080. [Google Scholar] [CrossRef]
- Magalhaes, F.A.; Vannozzi, G.; Gatta, G.; Fantozzi, S. Wearable inertial sensors in swimming motion analysis: A systematic review. J. Sports Sci. 2015, 33, 732–745. [Google Scholar] [CrossRef]
- International Tennis Federation. International Tennis Number Manual: Guidelines to Help Create and Run a National Tennis Rating System Using the International Tennis Number (2004). Available online: http://www.tennisplayandstay.com/media/131802/131802.pdf (accessed on 24 May 2021).
- Soucie, J.M.; Wang, C.; Forsyth, A.; Funk, S.; Dennis, M.; Roach, K.E.; Boone, D. Range of motion measurements: Reference values and a database for comparison studies. Haemophilia 2011, 17, 500–507. [Google Scholar] [CrossRef]
- Xsens Technologies B.V. MVN User Manual 2021. Available online: https://www.xsens.com/hubfs/Downloads/usermanual/MVN_User_Manual.pdf (accessed on 24 May 2021).
- Blair, S.; Duthie, G.; Robertson, S.; Hopkins, W.; Ball, K. Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes. J. Biomech. 2018, 17, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Al-Amri, M.; Nicholas, K.; Butoon, K.; Sparkes, V.; Sheeran, L.; Davies, J. Inertial measurement units for clinical movement analysis: Reliability and concurrent validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keaney, E.M.; Reid, M. Quantifying hitting activity in tennis with racket sensors: New dawn or false dawn. Sports Biomech. 2020, 19, 831–839. [Google Scholar] [CrossRef]
- Whiteside, D.; Elliott, B.; Lay, B.; Reid, M. The effect of age on discrete kinematics of the elite female tennis serve. J. Appl. Biomech. 2013, 29, 573–582. [Google Scholar] [CrossRef]
- Lees, A.; Barton, G.; Robinson, M. The influence of cardan rotation sequence on angular orientation data for the lower limb in the soccer kick. J. Sports Sci. 2010, 28, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Pfister, R.; Hager, R.L.; Hunter, I.; Seeley, M.K. Influence of tennis racquet kinematics on ball topspin angular velocity and accuracy during the forehand groundstroke. J. Sports Sci. Med. 2017, 16, 505. [Google Scholar]
- Gillet, B.; Rogowski, I.; Monga-Dubreuil, E.; Begon, M. Lower trapezius weakness and shoulder complex biomechanics during the tennis serve. Med. Sci. Sports Exerc. 2019, 51, 2531–2539. [Google Scholar] [CrossRef]
- Rogowski, I.; Creveaux, T.; Cheze, L.; Mace, P.; Dumas, R. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve. PLoS ONE 2014, 9, e104785. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.K. Alternatives to P value: Confidence interval and effect size. Korean J. Anesthesiol. 2016, 69, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.L.; Sidaway, B. Coordination Changes Associated with Practice of a Soccer Kick. Res. Q. Exerc. Sport 1994, 65, 93–99. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Nicol, C.; Avela, J.; Komi, P.V. The Stretch-Shortening Cycle. Sports Med. 2006, 36, 977–999. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Bideau, B.; Bideau, N.; Nicolas, G. Energy flow analysis during the tennis serve: Comparison between injured and noninjured tennis players. Am. J. Sports Med. 2014, 42, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Subijana, C.L.; Navarro, E. Kinetic energy transfer during the tennis serve. Biol. Sport 2010, 27, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Wong, F.K.H.; Keung, J.H.K.; Lau, N.M.L.; Ng, D.K.S.; Chung, J.W.Y.; Chow, D.H.K. Effects of body mass index and full body kinematics on tennis serve speed. J. Hum. Kinet. 2014, 40, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.; Jones, D.; Morgan, C.; Zeppieri, G., Jr. Relationship Between Range of Motion, Strength, Motor Control, Power, and the Tennis Serve in Competitive-Level Tennis Players: A Pilot Study. Sports Health 2018, 10, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Fett, J.; Ulbricht, A.; Ferrauti, A. Impact of physical performance and anthropometric characteristics on serve velocity in elite junior tennis players. J. Strength Cond. Res. 2020, 34, 192–202. [Google Scholar] [CrossRef] [PubMed]
Descriptive Data | SKF (n = 16) | GKF (n = 16) | p-Value |
---|---|---|---|
Body height (m) a | 1.66 ± 0.08 | 1.67 ± 0.06 | 0.942 |
Body mass (kg) a | 54.75 ± 6.25 | 56.08 ± 6.69 | 0.567 |
Age (years) b | 13.81 ± 1.05 | 14.25 ± 1.24 | 0.305 |
Tennis playing experience (years) a | 6.50 ± 2.42 | 7.00 ± 2.10 | 0.537 |
Weekly tennis training (h) b | 8.75 ± 1.44 | 9.25 ± 1.24 | 0.361 |
Weekly conditioning training (h) b | 4.38 ± 0.72 | 4.63 ± 0.62 | 0.361 |
Serve maximum knee flexion (°) a | 55.64 ± 8.66 | 74.72 ± 5.88 | <0.001 * |
Tennis Serve Performance | Descriptive | SKF (n = 16) | GKF (n = 16) | p | ES |
---|---|---|---|---|---|
Racket resultant velocity (km/h) | Mean ± SD | 21.12 ± 3.76 | 24.45 ± 1.73 | 0.004 * | 1.138 (large) |
CI95% | 19.12 − 23.13 | 23.52 − 25.37 | |||
Normalized racket impact height (%) | Mean ± SD | 122.63 ± 5.30 | 124.49 ± 3.16 | 0.236 | 0.426 |
CI95% | 119.80 − 125.45 | 122.81 − 126.17 | |||
Maximum knee extension velocity (°/s) | Mean ± SD | 405.11 ± 160.45 | 535.41 ± 110.74 | 0.012 * | 0.945 (large) |
CI95% | 319.61 − 490.61 | 476.40 − 594.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hornestam, J.F.; Souza, T.R.; Magalhães, F.A.; Begon, M.; Santos, T.R.T.; Fonseca, S.T. The Effects of Knee Flexion on Tennis Serve Performance of Intermediate Level Tennis Players. Sensors 2021, 21, 5254. https://doi.org/10.3390/s21165254
Hornestam JF, Souza TR, Magalhães FA, Begon M, Santos TRT, Fonseca ST. The Effects of Knee Flexion on Tennis Serve Performance of Intermediate Level Tennis Players. Sensors. 2021; 21(16):5254. https://doi.org/10.3390/s21165254
Chicago/Turabian StyleHornestam, Joana Ferreira, Thales Rezende Souza, Fabrício Anício Magalhães, Mickäel Begon, Thiago Ribeiro Teles Santos, and Sérgio Teixeixa Fonseca. 2021. "The Effects of Knee Flexion on Tennis Serve Performance of Intermediate Level Tennis Players" Sensors 21, no. 16: 5254. https://doi.org/10.3390/s21165254
APA StyleHornestam, J. F., Souza, T. R., Magalhães, F. A., Begon, M., Santos, T. R. T., & Fonseca, S. T. (2021). The Effects of Knee Flexion on Tennis Serve Performance of Intermediate Level Tennis Players. Sensors, 21(16), 5254. https://doi.org/10.3390/s21165254