Sensor-Based Indices for the Prediction and Monitoring of Anterior Cruciate Ligament Injury: Reliability Analysis and a Case Study in Basketball
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Experimental Protocol
2.3.1. Monopodalic Countermovement Jump—mCMJ
2.3.2. Single-Leg Squats—SLS
2.4. Data Analysis
2.4.1. Leg Stability
- Path length (PL), which is total length of the path in the plane.
- Path length in antero-posterior direction (PLAP).
- Path length in medio-lateral direction (PLML).
- Ellipse area (EA), which is the minimum area of the bivariate confidence ellipse that contains at least 99% of the path.
2.4.2. Load Absorption Capability
2.4.3. Leg Mobility
2.5. Reliability Analysis
2.6. Case Study—Statistical Analysis
3. Results
3.1. Reliability Analysis
3.2. Case Study
4. Discussion
4.1. Are the Proposed Indices Reliable for Evaluating Leg Stability, Leg Mobility and Load Absorption Capability?
4.2. Should the Reliable Indices Be Monitored to Identify Athletes at Higher Injury Risk?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Paolo, S.; Lopomo, N.F.; Della Villa, F.; Paolini, G.; Figari, G.; Bragonzoni, L.; Grassi, A.; Zaffagnini, S. Rehabilitation and Return to Sport Assessment after Anterior Cruciate Ligament Injury: Quantifying Joint Kinematics during Complex High-Speed Tasks through Wearable Sensors. Sensors 2021, 21, 2331. [Google Scholar] [CrossRef]
- Voskanian, N. ACL Injury prevention in female athletes: Review of the literature and practical considerations in implementing an ACL prevention program. Curr. Rev. Musculoskelet. Med. 2013, 6, 158–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ireland, M. The female ACL: Why is it more prone to injury? Orhop Clin. N. Am. 2002, 33, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Waldén, M.; Hägglund, M.; Magnusson, H.; Ekstrand, J. ACL injuries in men’s professional football: A 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. Br. J. Sports Med. 2016, 50, 744–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Gall, F.; Carling, C.; Reilly, T. Injuries in young elite female soccer players: An 8-season prospective study. Am. J. Sports Med. 2008, 36, 276–284. [Google Scholar] [CrossRef]
- Shelbourne, K.D.; Kerr, B. The relationship of femoral intercondylar notch width to height, weight, and sex in patients with intact anterior cruciate ligaments. Am. J. Knee Surg. 2001, 14, 92–96. [Google Scholar]
- Chandrashekar, N.; Slauterbeck, J.; Hashemi, J. Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: A cadaveric study. Am. J. Sports Med. 2005, 33, 1492–1498. [Google Scholar] [CrossRef]
- Karageanes, S.J.; Blackburn, K.; Vangelos, Z.A. The association of the menstrual cycle with the laxity of the anterior cruciate ligament in adolescent female athletes. Clin. J. Sport Med. 2000, 10, 162–168. [Google Scholar] [CrossRef]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of noncontact anterior cruciate ligament injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J. Orthop. Res. 2016, 34, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef]
- Taylor, K.A.; Terry, M.E.; Utturkar, G.M.; Spritzer, C.E.; Queen, R.M.; Irribarra, L.A.; Garrett, W.E.; DeFrate, L.E. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J. Biomech. 2011, 44, 365–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, D.R.; Rodríguez Bíes, E.C.; Berral de la Rosa, F.J. Analysis of the vertical ground reaction forces and temporal factors in the landing phase of a countermovement jump. J. Sport. Sci. Med. 2010, 9, 282–287. [Google Scholar]
- Landis, S.E.; Baker, R.T.; Seegmiller, J.G. Non-Contact Anterior Cruciate Ligament and Lower Extremity Injury Risk Prediction Using Functional Movement Screen and Knee Abduction Moment: An Epidemiological Observation of Female Intercollegiate Athletes. Int. J. Sports Phys. Ther. 2018, 13, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Numata, H.; Nakase, J.; Kitaoka, K.; Shima, Y.; Oshima, T.; Takata, Y.; Shimozaki, K.; Tsuchiya, H. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury. Knee Surg. Sport. Traumatol. Arthrosc. 2018, 26, 442–447. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Khoury, J.; Succop, P.; Hewett, T.E. Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am. J. Sports Med. 2010, 38, 2025–2033. [Google Scholar] [CrossRef] [Green Version]
- Mokhtarzadeh, H.; Yeow, C.H.; Hong Goh, J.C.; Oetomo, D.; Malekipour, F.; Lee, P.V.S. Contributions of the Soleus and Gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. J. Biomech. 2013, 46, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Podraza, J.T.; White, S.C. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: Implications for the non-contact mechanism of ACL injury. Knee 2010, 17, 291–295. [Google Scholar] [CrossRef]
- Fox, A.S.; Bonacci, J.; McLean, S.G.; Spittle, M.; Saunders, N. A Systematic Evaluation of Field-Based Screening Methods for the Assessment of Anterior Cruciate Ligament (ACL) Injury Risk. Sport. Med. 2016, 46, 715–735. [Google Scholar] [CrossRef]
- Janssen, I.; Streefkerk, A.; Linders, M. Comparing an inertial sensor system to video for ACL injury ris screening. In Proceedings of the 37th International Society of Biomechanics in Sports Conference, Oxford, OH, USA, 21–25 July 2019; pp. 292–295. [Google Scholar]
- Dowling, A.V.; Favre, J.; Andriacchi, T.P. A wearable system to assess risk for anterior cruciate ligament injury during jump landing: Measurements of temporal events, jump height, and sagittal plane kinematics. J. Biomech. Eng. 2011, 133. [Google Scholar] [CrossRef] [PubMed]
- Taborri, J.; Molinaro, L.; Santospagnuolo, A.; Vetrano, M.; Vulpiani, M.C.; Rossi, S. A Machine-Learning Approach to Measure the Anterior Cruciate Ligament Injury Risk in Female Basketball Players. Sensors 2021, 21, 3141. [Google Scholar] [CrossRef]
- Taborri, J.; Palermo, E.; Del Prete, Z.; Rossi, S. On the reliability and repeatability of surface electromyography factorization by muscle synergies in daily life activities. Appl. Bionics Biomech. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Van Der Does, H.T.D.; Brink, M.S.; Benjaminse, A.; Visscher, C.; Lemmink, K.A.P.M. Jump Landing Characteristics Predict Lower Extremity Injuries in Indoor Team Sports. Int. J. Sports Med. 2016, 37, 251–256. [Google Scholar] [CrossRef]
- Molinaro, L.; Santospagnuolo, A.; Vulpiani, M.; Taborri, J.; Vetrano, M.; Rossi, S. Can the measurements of leg stability during jump landing predict and monitor anterior cruciate ligament injury ? A case report of basketball player. In Proceedings of the IEEE International Conference on Medical Measurement and Applications, Bari, Italy, 1 June–1 July 2020; pp. 1–6. [Google Scholar]
- Ziv, G.; Lidor, R. Physical attributes, physiological characteristics, on-court performances and nutritional strategies of female and male basketball players. Sport. Med. 2009, 39, 547–568. [Google Scholar] [CrossRef]
- Cumps, E.; Verhagen, E.; Meeusen, R. Prospective epidemiological study of basketball injuries during one competitive season: Ankle sprains and overuse knee injuries. J. Sport. Sci. Med. 2007, 6, 204–211. [Google Scholar]
- Kim, S.; Bosque, J.; Meehan, J.P.; Jamali, A.; Marder, R. Increase in outpatient knee arthroscopy in the United States: A comparison of national surveys of ambulatory surgery, 1996 and 2006. J. Bone Jt. Surg. Ser. A 2011, 93, 994–1000. [Google Scholar] [CrossRef]
- Zelisko, J.A.; Noble, H.B.; Porter, M. A comparison of men’s and women’s professional basketball injuries. Am. J. Sports Med. 1982, 10, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Swenson, D.M.; Collins, C.L.; Best, T.M.; Flanigan, D.C.; Fields, S.K.; Comstock, R.D. Epidemiology of knee injuries among U.S. high school athletes, 2005/2006-2010/2011. Med. Sci. Sports Exerc. 2013, 45, 462–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesinski, M.; Muehlbauer, T.; Granacher, U. Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players. BMC Sports Sci. Med. Rehabil. 2016, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Molinaro, L.; Taborri, J.; Montecchiani, M.; Rossi, S. Assessing the effects of kata and kumite techniques on physical performance in elite karatekas. Sensors 2020, 20, 3186. [Google Scholar] [CrossRef] [PubMed]
- Cigrovski, V.; Franjko, I.; Rupčić, T.; Baković, M.; Matković, A. Comparison of Standard and Newer Balance Tests in Recreational Alpine Skiers and Ski Novices. J. Sport. Sci. Med. 2017, 6, 49–55. [Google Scholar]
- Arede, J.; Figueira, B.; Gonzalo-Skok, O.; Leite, N. Validity and reliability of Gyko Sport for the measurement of barbell velocity on the bench-press exercise. J. Sports Med. Phys. Fit. 2019, 59, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Lienhard, K.; Schneider, D.; Maffiuletti, N.A. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med. Eng. Phys. 2013, 35, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Song, C.H.; Lee, K.J.; Jung, S.W.; Shin, D.C.; Shin, S.H. Concurrent validity and test-retest reliability of the OPTOGait photoelectric cell system for the assessment of spatio-temporal parameters of the gait of young adults. J. Phys. Ther. Sci. 2014, 26, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Straaten, R.; Bruijnes, A.K.B.D.; Vanwanseele, B.; Jonkers, I.; De Baets, L.; Timmermans, A. Reliability and agreement of 3D trunk and lower extremity movement analysis by means of inertial sensor technology for unipodal and bipodal tasks. Sensors 2019, 19, 141. [Google Scholar] [CrossRef] [Green Version]
- Mahony, R.; Hamel, T.; Pflimlin, J.-M. Complementary filter design on the special orthogonal group SO(3). In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005; pp. 1477–1484. [Google Scholar]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef]
- Grassi, L.; Rossi, S.; Studer, V.; Vasco, G.; Motta, C.; Patanè, F.; Castelli, E.; Rossi, S.; Cappa, P. Quantification of postural stability in minimally disabled multiple sclerosis patients by means of dynamic posturography: An observational study. J. Neuroeng. Rehabil. 2017, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.H.; Lin, C.W.; Wu, H.W.; Wu, T.C.; Lin, C.F. Changes in biomechanics and muscle activation in injured ballet dancers during a jump-land task with turnout (Sissonne Fermée). J. Sports Sci. 2012, 30, 689–697. [Google Scholar] [CrossRef]
- Endo, Y.; Miura, M.; Sakamoto, M. The relationship between the deep squat movement and the hip, knee and ankle range of motion and muscle strength. J. Phys. Ther. Sci. 2020, 32, 391–394. [Google Scholar] [CrossRef]
- Carroll, K.M.; Wagle, J.P.; Sole, C.J.; Stone, M.H. Intrasession and Intersession Reliability of Countermovement Jump Testing in Division-I Volleyball Athletes. J. Strength Cond. Res. 2019, 33, 2932–2935. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, O.A.; Harrison, A.J.; Coffey, N.; Hayes, K. Functional data analysis of running kinematics in Chronic Achilles tendon injury. Med. Sci. Sports Exerc. 2008, 40, 1323–1335. [Google Scholar] [CrossRef]
- Rudolph, K.S.; Axe, M.J.; Snyder-Mackler, L. Dynamic stability after ACL injury: Who can hop? Knee Surg. Sport. Traumatol. Arthrosc. 2000, 8, 262–269. [Google Scholar] [CrossRef]
- Markström, J.L.; Tengman, E.; Häger, C.K. ACL-reconstructed and ACL-deficient individuals show differentiated trunk, hip, and knee kinematics during vertical hops more than 20 years post-injury. Knee Surg. Sport. Traumatol. Arthrosc. 2018, 26, 358–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myer, G.D.; Ford, K.R.; Brent, J.L.; Hewett, T.E. Differential neuromuscular training effects onACL injury risk factors in “high-risk” versus “low-risk” athletes. BMC Musculoskelet. Disord. 2007, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renström, P.; Arms, S.W.; Stanwyck, T.S.; Johnson, R.J.; Pope, M.H. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am. J. Sports Med. 1986, 14, 83–87. [Google Scholar] [CrossRef]
- Roi, G.S.; Nanni, G.; Tencone, F. Time to return to professional soccer matches after ACL reconstruction. Sport Sci. Health 2006, 1, 142–145. [Google Scholar] [CrossRef]
- King, E.; Richter, C.; Jackson, M.; Franklyn-Miller, A.; Falvey, E.; Myer, G.D.; Strike, S.; Withers, D.; Moran, R. Factors Influencing Return to Play and Second Anterior Cruciate Ligament Injury Rates in Level 1 Athletes After Primary Anterior Cruciate Ligament Reconstruction: 2-Year Follow-up on 1432 Reconstructions at a Single Center. Am. J. Sports Med. 2020, 48, 812–824. [Google Scholar] [CrossRef] [PubMed]
- Fältström, A.; Kvist, J.; Gauffin, H.; Hägglund, M. Female Soccer Players With Anterior Cruciate Ligament Reconstruction Have a Higher Risk of New Knee Injuries and Quit Soccer to a Higher Degree Than Knee-Healthy Controls. Am. J. Sports Med. 2019, 47, 31–40. [Google Scholar] [CrossRef]
mCMJ | SLST | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ts [s] | EA [cm2/s] | PL [cm/s] | PLAP [cm/s] | PLML [cm/s] | RMSz [m/s3] | RMSxy [m/s3] | EA [cm2/s] | θymax [°] | |
CG | 0.24 (0.06) | 0.42 (0.12) | 1.08 (0.15) * | 0.75 (0.16) * | 0.68 (0.07) | 57.21 (7.99) * | 48.69 (11.40) * | 0.33 (0.11) | 28.5 (2.6) * |
AthleteA | 0.22 (0.03) | 0.30 (0.09) | 1.56 (0.20) * | 1.35 (0.20) * | 0.58 (0.12) | 81.73 (10.18) * | 78.40 (14.15) * | 0.32 (0.10) | 21.8 (1.5) * |
PL [cm/s] | PLAP [cm/s] | RMSz [m/s3] | RMSxy [m/s3] | θymax [°] | |
---|---|---|---|---|---|
CG | 1.08 (0.15) | 0.75 (0.16) | 57.21 (7.99) | 48.69 (11.40) | 28.5 (2.6) |
POST1 | 0.87 (0.13) | 0.67 (0.21) | 65.20 (8.41) | 53.24 (9.20) | 26.5 (1.3) |
POST2 | 0.93 (0.16) | 0.74 (0.17) | 103.00 * (10.20) | 88.25 * (12.81) | 18.4 * (0.9) |
POST3 | 0.84 (0.12) | 0.63 (0.11) | 97.11 * (12.86) | 73.88 * (6.47) | 17.1 * (0.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinaro, L.; Taborri, J.; Santospagnuolo, A.; Vetrano, M.; Vulpiani, M.C.; Rossi, S. Sensor-Based Indices for the Prediction and Monitoring of Anterior Cruciate Ligament Injury: Reliability Analysis and a Case Study in Basketball. Sensors 2021, 21, 5341. https://doi.org/10.3390/s21165341
Molinaro L, Taborri J, Santospagnuolo A, Vetrano M, Vulpiani MC, Rossi S. Sensor-Based Indices for the Prediction and Monitoring of Anterior Cruciate Ligament Injury: Reliability Analysis and a Case Study in Basketball. Sensors. 2021; 21(16):5341. https://doi.org/10.3390/s21165341
Chicago/Turabian StyleMolinaro, Luca, Juri Taborri, Adriano Santospagnuolo, Mario Vetrano, Maria Chiara Vulpiani, and Stefano Rossi. 2021. "Sensor-Based Indices for the Prediction and Monitoring of Anterior Cruciate Ligament Injury: Reliability Analysis and a Case Study in Basketball" Sensors 21, no. 16: 5341. https://doi.org/10.3390/s21165341
APA StyleMolinaro, L., Taborri, J., Santospagnuolo, A., Vetrano, M., Vulpiani, M. C., & Rossi, S. (2021). Sensor-Based Indices for the Prediction and Monitoring of Anterior Cruciate Ligament Injury: Reliability Analysis and a Case Study in Basketball. Sensors, 21(16), 5341. https://doi.org/10.3390/s21165341