Novel Model Based on Artificial Neural Networks to Predict Short-Term Temperature Evolution in Museum Environment
Abstract
:1. Introduction
2. Rosenborg Castle
3. Microclimate Data in Rosenborg Castle
- RDC air temperature and relative humidity (hereafter named as RDC data);
- Copernicus data of air temperature, relative humidity, total precipitation, net solar radiation, horizontal wind components (zonal (u) and meridional (v) components).
- the first investigates the level of completeness (CoI) and continuity (CI) of the data series. Datasets that exceed the threshold value of 0.85 for CoI and for CI, pass to phase two;
- the second phase consists in dataset cleaning from NaN;
- the last phase involves data reorganization into homogeneous sampling matrices,
- RDC Stone Corridor dataset: 52,584 rows (from 1 January 2013 00:00:00 to 31 December 2018 00:00:00) and 2 variables: Indoor Temperature () and Indoor Relative Humidity ().
- dataset: 52,584 rows (from 1 January 2013 00:00:00 to 31 December 2018 00:00:00) and 6 variables: Outdoor Temperature (), Outdoor Relative Humidity (), Total Precipitation(), Net solar radiation at the surface (), u wind component (e.g., zonal component, ), v wind component (e.g., meridional component, ). Data are extracted from gridded observational dataset (spatial resolution of ) via the Climate Data Store (CDS) infrastructure.
4. Artificial Neural Network
4.1. NAR: Nonlinear Autoregressive Network
4.2. NARX: Nonlinear Autoregressive Network with Exogenous Inputs
- , indoor relative humidity.
- , temperature of the external environment.
- , relative humidity of the external environment.
- , total precipitation of the external environment.
- , net solar radiation at the surface of the external environment.
- , zonal wind component (u).
- , zonal wind component (v).
Training Algorithm and Performance Evaluation Metrics
5. Results and Discussion
5.1. Results with NAR Neural Network
5.2. Results with NARX
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Gorman, P.A.; Dwyer, J.G. Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events. J. Adv. Model. Earth Syst. 2018, 10, 2548–2563. [Google Scholar] [CrossRef] [Green Version]
- Bile, A.; Moratti, F.; Tari, H.; Fazio, E. Supervised and Unsupervised learning using a fully-plastic all-optical unit of artificial intelligence based on solitonic waveguides. Neural Comput. Appl. 2021, 33, 17071–17079. [Google Scholar] [CrossRef]
- Bile, A.; Pepino, R.; Fazio, E. Study of Magnetic Switch for Surface Plasmon Polariton Circuits. AIP Adv. 2021, 11, 045222. [Google Scholar] [CrossRef]
- Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Shaikhina, T.; Lowe, D.; Daga, S.; Briggs, D.; Higgins, R.; Khovanova, N. Machine Learning for Predictive Modelling based on Small Data in Biomedical Engineering. IFAC-PapersOnLine 2015, 48, 469–474. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernic. Clim. Chang. Serv. Clim. Data Store 2018, 10. [Google Scholar] [CrossRef]
- Frasca, F.; Cornaro, C.; Siani, A.M. A method based on environmental monitoring and building dynamic simulation to assess indoor climate control strategies in the preventive conservation within historical buildings. Sci. Technol. Built Environ. 2019, 25, 1253–1268. [Google Scholar] [CrossRef]
- Fazio, E.; Bonacquisti, V.; Di Michele, M.; Frasca, F.; Chianese, A.; Siani, A.M. CleAir Monitoring System for Particulate Matter: A Case in the Napoleonic Museum in Rome. Sensors 2017, 17, 2076. [Google Scholar] [CrossRef] [Green Version]
- Da Costa Lopes, F.; Watanabe, E.H.; Rolim, L.G.B. A control-oriented model of a PEM fuel cell stack based on NARX and NOE neural networks. IEEE Trans. Ind. Electron. 2015, 62, 5155–5163. [Google Scholar] [CrossRef]
- MathWorks. MATLAB Deep Learning Toolbox Release 2020a; MathWorks: Natick, MA, USA, 2020. [Google Scholar]
- López, M.; Valero, S.; Senabre, C.; Aparicio, J.; Gabaldon, A. Application of SOM neural networks to short-term load forecasting: The Spanish electricity market case study. Electr. Power Syst. Res. 2012, 91, 18–27. [Google Scholar] [CrossRef]
- Desouky, M.M.A.; Abdelkhalik, O. Wave prediction using wave rider position measurements and NARX network in wave energy conversion. Appl. Ocean Res. 2019, 82, 10–21. [Google Scholar] [CrossRef]
- Ruiz, L.; Cuéllar, M.; Calvo-Flores, M.; Jiménez, M. An application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies 2016, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Sahoo, S.; Jha, M.K. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeol. J. 2013, 21, 1865–1887. [Google Scholar] [CrossRef]
- Sarkar, R.; Julai, S.; Hossain, S.; Chong, W.T.; Rahman, M. A Comparative Study of Activation Functions of NAR and NARX Neural Networks for Long-Term Wind Speed Forecasting in Malaysia. Math. Probl. Eng. 2019, 2019, 6403081. [Google Scholar] [CrossRef]
- Taherdangkoo, R.; Tatomir, A.; Taherdangkoo, M.; Qiu, P.; Sauter, M. Nonlinear Autoregressive Neural Networks to Predict Hydraulic Fracturing Fluid Leakage into Shallow Groundwater. Water 2020, 12, 841. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Meng, J. NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets Syst. 2005, 150, 331–350. [Google Scholar] [CrossRef]
- Pawar, R.J.; Watson, T.L.; Gable, C.W. Numerical simulation of CO2 leakage through abandoned wells: Model for an abandoned site with observed gas migration in Alberta, Canada. Energy Procedia 2009, 1, 3625–3632. [Google Scholar] [CrossRef] [Green Version]
- Shafullah, G.; Oo, A.M.T.; Ali, A.S.; Wolfs, P. Potential challenges of integrating large-scale wind energy into the power grid—A review. Renew. Sustain. Energy Rev. 2013, 20, 306–321. [Google Scholar] [CrossRef]
- Hassan, M.A.; Bailek, N.; Bouchouicha, K.; Nwokolo, S.C. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renew. Energy 2021, 171, 191–209. [Google Scholar] [CrossRef]
- Di Nunno, F.; de Marinis, G.; Gargano, R.; Granata, F. Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Netowrk. Water 2021, 13, 1173. [Google Scholar] [CrossRef]
- Lin, T.; Horne, B. Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans. Neural Netw. 1996, 10, 1329–1351. [Google Scholar]
- Wang, K.W.; Deng, C.; Li, J.P.; Zhang, Y.Y.; Li, X.Y.; Wu, M.C. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network. Epidemiol. Infect. 2017, 145, 1118–1129. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.H.; Zhao, W.G.; Lu, H.Y.; Wang, J. Multistep forecasting for wind speed using a modifed EMD-based artifcial neural network model. J. Renew. Energy 2012, 37, 241–249. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bile, A.; Tari, H.; Grinde, A.; Frasca, F.; Siani, A.M.; Fazio, E. Novel Model Based on Artificial Neural Networks to Predict Short-Term Temperature Evolution in Museum Environment. Sensors 2022, 22, 615. https://doi.org/10.3390/s22020615
Bile A, Tari H, Grinde A, Frasca F, Siani AM, Fazio E. Novel Model Based on Artificial Neural Networks to Predict Short-Term Temperature Evolution in Museum Environment. Sensors. 2022; 22(2):615. https://doi.org/10.3390/s22020615
Chicago/Turabian StyleBile, Alessandro, Hamed Tari, Andreas Grinde, Francesca Frasca, Anna Maria Siani, and Eugenio Fazio. 2022. "Novel Model Based on Artificial Neural Networks to Predict Short-Term Temperature Evolution in Museum Environment" Sensors 22, no. 2: 615. https://doi.org/10.3390/s22020615
APA StyleBile, A., Tari, H., Grinde, A., Frasca, F., Siani, A. M., & Fazio, E. (2022). Novel Model Based on Artificial Neural Networks to Predict Short-Term Temperature Evolution in Museum Environment. Sensors, 22(2), 615. https://doi.org/10.3390/s22020615