Generative Design in Building Information Modelling (BIM): Approaches and Requirements
Abstract
:1. Introduction
2. Generative Design and Building Information Modelling
2.1. Generative Design
2.2. Components of a GD
2.3. Building Information Modelling
2.4. Integration of GD with BIM
3. Review Methodology
- Scopus as the search database.
- Search within: article title, abstract, keywords.
- Search keywords: “Generative design” OR “Parametric design” OR “Algorithm design” AND “Building information modelling” OR “BIM”.
- Publications published between 2010 and 2020.
- Document type: articles and conference papers.
- Publication language: English.
- Relationships between programming languages and developing different GD-BIM objectives.
- Relationships between programming languages and developing different GD components.
- Skill requirement and learning paths of programming languages for developing GD-BIM.
4. Analysis
4.1. Objectives of Developing GD in BIM and the Relationship to Programming Languages
4.1.1. Categorising and Comparison of Different Objectives of GD-BIM Development
4.1.2. Publications of Different Objectives of GD-BIM Development
4.1.3. Application of Programming Languages Based on Different Objectives
4.1.4. Perspective of Objectives-Oriented GD-BIM Development
4.2. Suitability of Programming Languages for GD-BIM Development
4.2.1. Programming Languages and Software Used to Develop GD in BIM
4.2.2. Suitability Relationship between Programming Languages and GD Component Development
4.2.3. Perspective of GD Component-Based GD-BIM Development
4.3. Programming Skill Learning & Improving for GD-BIM Development
4.3.1. Designers’ Learning of VPLs and TPLs
4.3.2. Influence from Portable Development Environments
4.3.3. Recommendations to Designers on Skill Learning and Improving
4.3.4. Perspective of Skill-Driven GD-BIM Development
5. Discussion
5.1. Develop More Sophisticated and Systematic GD-BIM to Support More Design Processes
5.2. Reduce Programming Difficulties for Designers to Facilitate GD-BIM Development
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meintjes, K. ‘“Generative Design”—What’s That?—CIMdata’, CIMdata. 2017. Available online: https://www.cimdata.com/en/news/item/8402-generative-design-what-s-that (accessed on 13 June 2020).
- Nagy, D.; Villaggi, L. ‘Generative Design for Architectural Space Planning’. Autodesk University. 2020. Available online: https://www.autodesk.com/autodesk-university/article/Generative-Design-Architectural-Space-Planning-2020 (accessed on 15 June 2020).
- Wang, X.; Love, P.E.D.; Kim, M.J.; Park, C.-S.; Sing, C.P.; Hou, L. A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 2013, 34, 37–44. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Wang, P.; Wu, Z.; Kim, M.J. Integration of BIM and GIS: Geometry from IFC to Shapefile Using Open-Source Technology. Autom. Constr. 2019, 102, 105–119. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Wu, P.; Wang, J.; He, Q.; Wang, X. Estimating the environmental costs and benefits of demolition waste using life cycle assessment and willingness-to-pay: A case study in Shenzhen. J. Clean. Prod. 2018, 172, 14–26. [Google Scholar] [CrossRef]
- Zhang, C.; Gholipour, G.; Mousavi, A.A. Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading. Eng. Struct. 2019, 181, 124–142. [Google Scholar] [CrossRef]
- Mou, B.; Li, X.; Bai, Y.; Wang, L. Shear Behavior of Panel Zones in Steel Beam-to-Column Connections with Unequal Depth of Outer Annular Stiffener. J. Struct. Eng. 2019, 145, 04018247. [Google Scholar] [CrossRef]
- Deshmukh, M.; Mahatme, C. Generative Design: A New Intelligent Design & Manufacturing Approach. Chemik 2020, 2, 193–198. [Google Scholar]
- Abedini, M.; Zhang, C. Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical Simulation, A State of the Art Review. Arch. Comput. Methods Eng. 2021, 28, 2921–2942. [Google Scholar] [CrossRef]
- Alam, Z.; Sun, L.; Zhang, C.; Su, Z.; Samali, B. Experimental and numerical investigation on the complex behaviour of the localised seismic response in a multi-storey plan-asymmetric structure. Struct. Infrastruct. Eng. 2021, 17, 86–102. [Google Scholar] [CrossRef]
- Zenggang, X.; Zhiwen, T.; Xiaowen, C.; Xue-Min, Z.; Kaibin, Z.; Conghuan, Y. Research on Image Retrieval Algorithm Based on Combination of Color and Shape Features. J. Signal. Process. Syst. 2021, 93, 139–146. [Google Scholar] [CrossRef]
- Toth, B.; Janssen, P.; Stouffs, R.; Chaszar, A.; Boeykens, S. Custom Digital Workflows: A New Framework for Design Analysis Integration. Int. J. Arch. Comput. 2012, 10, 481–499. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, Y.; Wang, X. An environmental assessment model of construction and demolition waste based on system dynamics: A case study in Guangzhou. Environ. Sci. Pollut. Res. 2020, 27, 37237–37259. [Google Scholar] [CrossRef]
- Gao, N.; Tang, L.; Deng, J.; Lu, K.; Hou, H.; Chen, K. Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge. Appl. Acoust. 2021, 175, 107845. [Google Scholar] [CrossRef]
- He, L.; Shao, F.; Ren, L. Sustainability appraisal of desired contaminated groundwater remediation strategies: An information-entropy-based stochastic multi-criteria preference model. Environ. Dev. Sustain. 2021, 23, 1759–1779. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.C.P.; Hampson, K. Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective. ISPRS Int. J. Geo. Inf. 2017, 6, 397. [Google Scholar] [CrossRef] [Green Version]
- Leitão, A.; Santos, L.; Lopes, J.D.A. Programming Languages for Generative Design: A Comparative Study. Int. J. Arch. Comput. 2012, 10, 139–162. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Lu, H.; Yan, P. Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains. J. Clean. Prod. 2021, 278, 123209. [Google Scholar] [CrossRef]
- Zhu, L.; Kong, L.; Zhang, C. Numerical Study on Hysteretic Behaviour of Horizontal-Connection and Energy-Dissipation Structures Developed for Prefabricated Shear Walls. Appl. Sci. 2020, 10, 1240. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.-J.; Xu, L.-X.; Yang, G.-H. Multiple Environment Integral Reinforcement Learning-Based Fault-Tolerant Control for Affine Nonlinear Systems. IEEE Trans. Cybern. 2021, 51, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, B.; Feng, Y.; Lv, X.; Ji, D.; Niu, Z.; Yang, Y.; Zhao, X.; Fan, Y. Development of 340-GHz Transceiver Front End Based on GaAs Monolithic Integration Technology for THz Active Imaging Array. Appl. Sci. 2020, 10, 7924. [Google Scholar] [CrossRef]
- Li, B.-H.; Liu, Y.; Zhang, A.-M.; Wang, W.-H.; Wan, S. A Survey on Blocking Technology of Entity Resolution. J. Comput. Sci. Technol. 2020, 35, 769–793. [Google Scholar] [CrossRef]
- Shea, K.; Aish, R.; Gourtovaia, M. Towards integrated performance-driven generative design tools. Autom. Constr. 2005, 14, 253–264. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X.; Chen, M.; Kim, M.J. Differential Received Signal Strength Based RFID Positioning for Construction Equipment Tracking. Adv. Eng. Inform. 2019, 42, 100960. [Google Scholar] [CrossRef]
- Computational Design Software, Buildings-GenerativeComponents. Available online: https://www.bentley.com/en/products/product-line/modeling-and-visualization-software/generativecomponents (accessed on 21 January 2021).
- Zhu, J.; Wang, X.; Chen, M.; Wu, P.; Kim, M.J. Integration of BIM and GIS: IFC Geometry Transformation to Shapefile Using Enhanced Open-Source Approach. Autom. Constr. 2019, 106, 102859. [Google Scholar] [CrossRef]
- Frazer, J. Creative Design and the Generative Evolutionary Paradigm. In Creative Evolutionary Systems; Elsevier BV: Amsterdam, The Netherlands, 2002; pp. 253–274. [Google Scholar]
- Luisa, C.; José, D. Implementation Issues in Generative Design Systems, First International Conference on Design Computing and Cognition. 2004. Available online: http://home.fa.utl.pt/~jduarte/dcc08_workshop/2004_Proceedings_Workshop_3_DCC04.pdf (accessed on 21 January 2021).
- BuHamdan, S.; Alwisy, A.; Bouferguene, A. Generative systems in the architecture, engineering and construction industry: A systematic review and analysis. Int. J. Arch. Comput. 2020. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Wang, J.; Chien, W.-T.; Wei, C.-Y.; Wang, X.; Hsieh, S.-H. A BIM-Based Approach for Predicting Corrosion under Insulation. Autom. Constr. 2019, 107, 102923. [Google Scholar] [CrossRef]
- Monizza, G.P.; Bendetti, C.; Matt, D.T. Parametric and Generative Design techniques in mass-production environments as effective enablers of Industry 4.0 approaches in the Building Industry. Autom. Constr. 2018, 92, 270–285. [Google Scholar] [CrossRef]
- Touloupaki, E.; Theodosiou, T. Energy Performance Optimization as a Generative Design Tool for Nearly Zero Energy Buildings. Procedia Eng. 2017, 180, 1178–1185. [Google Scholar] [CrossRef]
- Nagy, D.; Lau, D.; Locke, J.; Stoddart, J.; Villaggi, L.; Wang, R.; Zhao, D.; Benjamin, D. Project Discover: An Application of Generative Design for Architectural Space Planning. In Proceedings of the Symposium on Simulation for Architecture and Urban Design, Toronto, ON, Canada, 22–24 May 2017; Society for Modeling and Simulation International (SCS): San Diego, CA, USA; New York, NY, USA, 2017; p. 7. [Google Scholar]
- Singh, V.; Gu, N. Towards an integrated generative design framework. Des. Stud. 2012, 33, 185–207. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, C.; Li, A. Experimental Investigation on the Mechanical Properties of Curved Metallic Plate Dampers. Appl. Sci. 2019, 10, 269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, H. Robustness of the Active Rotary Inertia Driver System for Structural Swing Vibration Control Subjected to Multi-Type Hazard Excitations. Appl. Sci. 2019, 9, 4391. [Google Scholar] [CrossRef] [Green Version]
- Gholipour, G.; Zhang, C.; Mousavi, A.A. Nonlinear numerical analysis and progressive damage assessment of a cable-stayed bridge pier subjected to ship collision. Mar. Struct. 2020, 69, 102662. [Google Scholar] [CrossRef]
- Alam, Z.; Zhang, C.; Samali, B. The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures. Earthq. Eng. Eng. Vib. 2020, 19, 223–237. [Google Scholar] [CrossRef]
- Krish, S. A practical generative design method. Comput. Des. 2011, 43, 88–100. [Google Scholar] [CrossRef]
- Marsh, A. Generative and Performative Design: A Challenging New Role for Modern Architects. In The Oxford Conference 2008; WIT Press: Oxford, UK, 2008; p. 5. [Google Scholar]
- Abedini, M.; Mutalib, A.A.; Zhang, C.; Mehrmashhadi, J.; Raman, S.N.; Alipour, R.; Momeni, T.; Mussa, M.H. Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads. Front. Struct. Civ. Eng. 2020, 14, 532–553. [Google Scholar] [CrossRef] [Green Version]
- Medjdoub, B.; Chenini, M.B. A constraint-based parametric model to support building services design exploration. Arch. Eng. Des. Manag. 2013, 11, 123–136. [Google Scholar] [CrossRef]
- Buonamici, F.; Carfagni, M.; Furferi, R.; Volpe, Y.; Governi, L. Generative Design: An Explorative Study. Comput. Des. Appl. 2020, 18, 144–155. [Google Scholar] [CrossRef]
- Sun, L.; Yang, Z.; Jin, Q.; Yan, W. Effect of Axial Compression Ratio on Seismic Behavior of GFRP Reinforced Concrete Columns. Int. J. Struct. Stab. Dyn. 2020, 20, 2040004. [Google Scholar] [CrossRef]
- Wu, C.; Wu, P.; Wang, J.; Jiang, R.; Chen, M.; Wang, X. Ontological Knowledge Base for Concrete Bridge Rehabilitation Project Management. Autom. Constr. 2021, 121, 103428. [Google Scholar] [CrossRef]
- Gholipour, G.; Zhang, C.; Mousavi, A.A. Numerical analysis of axially loaded RC columns subjected to the combination of impact and blast loads. Eng. Struct. 2020, 219, 110924. [Google Scholar] [CrossRef]
- Abedini, M.; Zhang, C.; Mehrmashhadi, J.; Akhlaghi, E. Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column. Structures 2020, 28, 456–466. [Google Scholar] [CrossRef]
- Alam, Z.; Zhang, C.; Samali, B. Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure. Struct. Des. Tall Spéc. Build. 2020, 29, 1750. [Google Scholar] [CrossRef]
- Azhar, S.; Khalfan, M.; Maqsood, T. Building information modelling (BIM): Now and beyond. Constr. Econ. Build. 2015, 12, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wu, P.; Chen, M.; Kim, M.J.; Wang, X.; Fang, T. Automatically Processing IFC Clipping Representation for BIM and GIS Integration at the Process Level. Appl. Sci. 2020, 10, 2009. [Google Scholar] [CrossRef] [Green Version]
- Hardin, B. BIM and Construction Management: Proven Tools, Methods, and Workflows, 1st ed.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Ju, Y.; Shen, T.; Wang, D. Bonding behavior between reactive powder concrete and normal strength concrete. Constr. Build. Mater. 2020, 242, 118024. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.; Kim, I. Development of Quality Control Requirements for Improving the Quality of Architectural Design Based on BIM. Appl. Sci. 2020, 10, 7074. [Google Scholar] [CrossRef]
- Ariza-López, F.J.; Rodríguez-Avi, J.; Reinoso-Gordo, J.F.; Ariza-López, Í.A.; López, A. Quality Control of “As Built” BIM Datasets Using the ISO 19157 Framework and a Multiple Hypothesis Testing Method Based on Proportions. ISPRS Int. J. Geo. Inf. 2019, 8, 569. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Abedini, M.; Mehrmashhadi, J. Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity Arbitrary Lagrangian-Eulerian simulation. Eng. Struct. 2020, 224, 111219. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Z.; Yang, Y.; Wei, J. Assessment of FRP–Concrete Interfacial Debonding with Coupled Mixed-Mode Cohesive Zone Model. J. Compos. Constr. 2021, 25, 04021002. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H. Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification. Struct. Control. Heal. Monit. 2020, 27, 2543. [Google Scholar] [CrossRef]
- Sydora, C.; Stroulia, E. Rule-based compliance checking and generative design for building interiors using BIM. Autom. Constr. 2020, 120, 103368. [Google Scholar] [CrossRef]
- Mason, M. Extending BIM Design Value Using the Revit Api|AUGI-The World’s Largest CAD & BIM User Group. 2009. Available online: https://www.augi.com/articles/detail/extending-bim-design-value-using-the-revit-api (accessed on 1 February 2021).
- Feist, S.; Barreto, G.; Ferreira, B.; Leitão, A. Portable generative design for building information modelling. In Living Systems and Micro-Utopias: Towards Continuous Designing; The Association for Computer-Aided Architectural Design Research in Asia: Hong Kong, China, 2016; p. 10. [Google Scholar]
- Huang, H.; Huang, M.; Zhang, W.; Pospisil, S.; Wu, T. Experimental Investigation on Rehabilitation of Corroded RC Columns with BSP and HPFL under Combined Loadings. J. Struct. Eng. 2020, 146, 04020157. [Google Scholar] [CrossRef]
- Huang, H.; Guo, M.; Zhang, W.; Zeng, J.; Yang, K.; Bai, H. Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings. J. Build. Eng. 2021, 39, 102266. [Google Scholar] [CrossRef]
- Huang, H.; Huang, M.; Zhang, W.; Yang, S. Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases. Struct. Infrastruct. Eng. 2021, 17, 1210–1227. [Google Scholar] [CrossRef]
- David, S. Generative Design in Revit Now Available, Revit Official Blog. 2020. Available online: https://blogs.autodesk.com/revit/2020/04/08/generative-design-in-revit/ (accessed on 12 June 2020).
- Wu, C.; Wu, P.; Wang, J.; Jiang, R.; Chen, M.; Wang, X. Critical Review of Data-Driven Decision-Making in Bridge Operation and Maintenance. Struct. Infrastruct. Eng. 2020, 1–24. [Google Scholar] [CrossRef]
- Zhang, C.; Gholipour, G.; Mousavi, A.A. Blast loads induced responses of RC structural members: State-of-the-art review. Compos. Part. B: Eng. 2020, 195, 108066. [Google Scholar] [CrossRef]
- Gao, N.; Wang, B.; Lu, K.; Hou, H. Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure. Appl. Acoust. 2021, 177, 107906. [Google Scholar] [CrossRef]
- Li, A.; Spano, D.; Krivochiza, J.; Domouchtsidis, S.; Tsinos, C.G.; Masouros, C.; Chatzinotas, S.; Li, Y.; Vucetic, B.; Ottersten, B. A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions. IEEE Commun. Surv. Tutor. 2020, 22, 796–839. [Google Scholar] [CrossRef]
- Welzenbach, R. Research Guides: Research Impact Metrics: Citation Analysis: Scopus. Available online: https://guides.lib.umich.edu/citation/Scopus (accessed on 8 October 2020).
- Elsevier. Content—How Scopus Works. Available online: https://www.elsevier.com/solutions/scopus/how-scopus-works/content (accessed on 25 November 2020).
- Caetano, I.; Santos, L.; Leitão, A. Computational design in architecture: Defining parametric, generative, and algorithmic design. Front. Arch. Res. 2020, 9, 287–300. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H. Swing Vibration Control of Suspended Structure Using Active Rotary Inertia Driver System: Parametric Analysis and Experimental Verification. Appl. Sci. 2019, 9, 3144. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Yang, K.; Chen, Y.; Fan, G.; Zhang, L.; Guo, B.; Guan, X.; Zhao, R. Revealing the substitution preference of zinc in ordinary Portland cement clinker phases: A study from experiments and DFT calculations. J. Hazard. Mater. 2021, 409, 124504. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Y.; Zhang, L.; Guo, B.; Fan, G.; Guan, X.; Zhao, R. Revealing the doping mechanism of barium in sulfoaluminate cement clinker phases. J. Clean. Prod. 2021, 295, 126405. [Google Scholar] [CrossRef]
- Roovers, K.; Raucroix, X.; Wyns, K.; Meerkerk, A.; van Steirteghem, J. Design and production automation for the A16 tunnel in Rotterdam. In IABSE Congress, New York, New York 2019: The Evolving Metropolis; International Association for Bridge and Structural Engineering (IABSE): Zürich, Switzerland, 2019; pp. 1844–1850. [Google Scholar]
- Ma, C.; Zhu, C.; Xiang, K. Digital Aided Façade Design Introduced in A Traditional Design Workflow. In Proceedings of the 24th CAADRIA Conference, Wellington, New Zealand, 15–18 April 2019; pp. 675–684. [Google Scholar]
- Castro, A.B.; Bío, U.D.B.; Alvarado, R.G. BIM-Integration of solar thermal systems in early housing design. Rev. Constr. 2017, 16, 323–338. [Google Scholar] [CrossRef]
- Yoo, B.; Yoon, H.; Kim, Y.; Lee, K.M. Stepwise Application of BIM-based Parametric Modeling to Tapered Slip-Form System. Procedia Eng. 2016, 145, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Peng, M. The parametric design of Shanghai Tower’s form and façade. In Proceedings of the CTBUH 2012 9th World Congress, Shanghai, China, 19–21 September 2012. [Google Scholar]
- Akkoyunlu, T. Parametric BIM Façade Module Development for Diagrid Twisted Structures. In Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC), International Association for Automation and Robotics in Construction (IAARC), Berlin, Germany, 20–25 July 2018; pp. 1056–1061. [Google Scholar]
- Wortmann, T.; Tuncer, B. Differentiating parametric design: Digital workflows in contemporary architecture and construction. Des. Stud. 2017, 52, 173–197. [Google Scholar] [CrossRef]
- Caetano, I.; Leitão, A. Integration of an algorithmic BIM approach in a traditional architecture studio. J. Comput. Des. Eng. 2018, 6, 327–336. [Google Scholar] [CrossRef]
- Veloso, P.; Celani, G.; Scheeren, R. From the generation of layouts to the production of construction documents: An application in the customization of apartment plans. Autom. Constr. 2018, 96, 224–235. [Google Scholar] [CrossRef]
- Abrishami, S.; Goulding, J.; Rahimian, F. Generative BIM workspace for AEC conceptual design automation: Prototype development. Eng. Constr. Arch. Manag. 2020, 28, 482–509. [Google Scholar] [CrossRef]
- Sydora, C.; Stroulia, E. Generative Interior Design using BIM. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Association for Computing Machinery (ACM), New York, NY, USA, 13–14 November 2019; pp. 354–355. [Google Scholar]
- Tafraout, S.; Bourahla, N.; Mebarki, A. Automatic structural design of RC wall-slab buildings using a genetic algorithm with application in BIM environment. Autom. Constr. 2019, 106, 102901. [Google Scholar] [CrossRef]
- Bianconi, F.; Filippucci, M.; Buffi, A. Automated design and modeling for mass-customized housing. A web-based design space catalog for timber structures. Autom. Constr. 2019, 103, 13–25. [Google Scholar] [CrossRef]
- Banihashemi, S.; Tabadkani, A.; Hosseini, M.R. Integration of parametric design into modular coordination: A construction waste reduction workflow. Autom. Constr. 2018, 88, 1–12. [Google Scholar] [CrossRef]
- Stumm, S.; Neu, P.; Brell-Cokcan, P.N.A.S. Towards Cloud Informed Robotics. In Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC); International Association for Automation and Robotics in Construction (IAARC), Taipei, Taiwan, 28 June–1 July 2017; pp. 59–64. [Google Scholar]
- Khalili-Araghi, S.; Kolarevic, B. Development of a framework for dimensional customization system: A novel method for customer participation. J. Build. Eng. 2016, 5, 231–238. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Huang, S.-C. Adaptive Building Facade Optimisation. In Proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2016, Melbourne, Australia, 30 March–2 April 2016; pp. 259–268. [Google Scholar]
- Abrishami, S.; Goulding, J.; Rahimian, F.; Ganah, A. Virtual generative BIM workspace for maximising AEC conceptual design innovation. Constr. Innov. 2015, 15, 24–41. [Google Scholar] [CrossRef] [Green Version]
- Abrishami, S.; Goulding, J.; Pour Rahimian, F.; Ganah, A. Integration of BIM and generative design to exploit AEC conceptual design innovation. Electron. J. Inf. Technol. Constr. 2014, 19, 350–359. [Google Scholar]
- Abrishami, S.; Goulding, J.; Pour Rahimian, F.; Ganah, A.; Sawhney, A. G-BIM Framework and Development Process for Integrated AEC Design Automation. Procedia Eng. 2014, 85, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Afsari, K.; Swarts, M.E.; Gentry, T.R. Integrated Generative Technique for Interactive Design of Brickworks. J. Inf. Technol. Constr. 2014, 19, 225–247. [Google Scholar]
- Fernando, R.; Drogemuller, R. Parametric and Generative Methods with Building Information Modelling: Connecting BIM with explorative design modelling. In Proceedings of the Beyond Codes and Pixels, Hong Kong, China, 4 April 2012; pp. 537–546. [Google Scholar]
- Wang, J.; Li, J.; Chen, X. Parametric Design Based on Building Information Modeling for Sustainable Buildings. In Proceedings of the 2010 International Conference on Challenges in Environmental Science and Computer Engineering; Institute of Electrical and Electronics Engineers (IEEE), Wuhan, China, 6–7 March 2010; Volume 2, pp. 236–239. [Google Scholar]
- Leitão, A.; Castelo-Branco, R.; Cardoso, C. Algorithmic-Based Analysis-Design and Analysis in a Multi Back-end Generative Tool. In Proceedings of the 22nd CAADRIA Conference, Xi’an Jiaotong-Liverpool University, Suzhou, China, 5–8 April 2017; pp. 137–146. [Google Scholar]
- Sabra, J.B.; Mullins, M.F. Design of parametric software tools: Optimizing future health care performance by integrating evidence-based knowledge in architectural design and building processes. Light Eng. Archit. Environ. 2011, 121, 37–49. [Google Scholar]
- González-Márquez, R.J.; Esparza, R.M. Tool Design as a Strategy for Architectural Design. In Proceedings of the Presentation for the XXXVII IAHS World Congress on Housing, Santander, Spain, 26–29 October 2010; p. 9. [Google Scholar]
- Noone, M.; Mooney, A. Visual and textual programming languages: A systematic review of the literature. J. Comput. Educ. 2018, 5, 149–174. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, B.; Leitão, A. Generative Design for Building Information Modeling. In Proceedings of the 33rd eCAADe, Vienna, Austria, 16–18 September 2015; pp. 635–644. [Google Scholar]
- Loomis, M. Rhino Grasshopper VS Generative Components, Designplaygrounds. 2011. Available online: http://designplaygrounds.com/deviants/rhino-grasshopper-vs-generative-components/ (accessed on 13 February 2021).
- Boshernitsan, M.; Downes, M. Visual Programming Languages: A Survey; University of California: Berkley, CA, USA, 2004. [Google Scholar]
- An Overview of Generative Components-Generative Components Community Wiki-Generative Components-Bentley Communities. Available online: https://communities.bentley.com/products/products_generativecomponents/w/generative_components_community_wiki (accessed on 15 February 2021).
- Leitão, A.; Cabecinhas, F.; Martins, S. Revisiting the Architecture Curriculum: The programming perspective. In Proceedings of the 28th eCAADe, Zurich, Switzerland, 15–18 September 2010; pp. 81–88. [Google Scholar]
- Zhao, R.; Zhang, L.; Fan, G.; Chen, Y.; Huang, G.; Zhang, H.; Zhu, J.; Guan, X. Probing the exact form and doping preference of magnesium in ordinary Portland cement clinker phases: A study from experiments and DFT simulations. Cem. Concr. Res. 2021, 144, 106420. [Google Scholar] [CrossRef]
- CHEN, V. A History of Visual Programming: From Basic to Bubble, Bubble Blog-The Best Way to Build Web Apps without Code. 2020. Available online: https://bubble.io/blog/visual-programming/ (accessed on 20 February 2021).
- Leitão, A.; Caetano, I.; Correia, H. Processing architecture. Int. J. Arch. Comput. 2016, 14, 147–157. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Shou, W.; Ngo, T.; Sadick, A.-M.; Wang, X. Computer Vision Techniques in Construction: A Critical Review. Arch. Comput. Methods Eng. 2021, 28, 3383–3397. [Google Scholar] [CrossRef]
- Sun, L.; Li, C.; Zhang, C.; Liang, T.; Zhao, Z. The Strain Transfer Mechanism of Fiber Bragg Grating Sensor for Extra Large Strain Monitoring. Sensors 2019, 19, 1851. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Sun, L.; Xu, Z.; Wu, X.; Liang, T.; Shi, W. Experimental Investigation and Error Analysis of High Precision FBG Displacement Sensor for Structural Health Monitoring. Int. J. Struct. Stab. Dyn. 2020, 20, 2040011. [Google Scholar] [CrossRef]
- Ma, H.-J.; Xu, L.-X. Decentralized Adaptive Fault-Tolerant Control for a Class of Strong Interconnected Nonlinear Systems via Graph Theory. IEEE Trans. Autom. Control. 2021, 66, 3227–3234. [Google Scholar] [CrossRef]
- Ma, G.; Sun, J.; Wang, L.; Aslani, F.; Liu, M. Electromagnetic and microwave absorbing properties of cementitious composite for 3D printing containing waste copper solids. Cem. Concr. Compos. 2018, 94, 215–225. [Google Scholar] [CrossRef]
- Ma, G.; Sun, J.; Aslani, F.; Huang, Y.; Jiao, F. Review on electromagnetic wave absorbing capacity improvement of cementitious material. Constr. Build. Mater. 2020, 262, 120907. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, J.; Wang, L.; Li, Z.; Sun, J. Mechanical characterization of 3D printed anisotropic cementitious material by the electromechanical transducer. Smart Mater. Struct. 2018, 27, 075036. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Aslani, F.; Ma, G. Properties of a double-layer EMW-absorbing structure containing a graded nano-sized absorbent combing extruded and sprayed 3D printing. Constr. Build. Mater. 2020, 261, 120031. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Aslani, F.; Ma, G. Electromagnetic wave absorbing performance of 3D printed wave-shape copper solid cementitious element. Cem. Concr. Compos. 2020, 114, 103789. [Google Scholar] [CrossRef]
- Ma, H.-J.; Yang, G.-H. Adaptive Fault Tolerant Control of Cooperative Heterogeneous Systems with Actuator Faults and Unreliable Interconnections. IEEE Trans. Autom. Control. 2016, 61, 3240–3255. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Aslani, F.; Wang, X.; Ma, G. Mechanical enhancement for EMW-absorbing cementitious material using 3D concrete printing. J. Build. Eng. 2021, 41, 102763. [Google Scholar] [CrossRef]
- Sun, J.; Aslani, F.; Wei, J.; Wang, X. Electromagnetic absorption of copper fiber oriented composite using 3D printing. Constr. Build. Mater. 2021, 300, 124026. [Google Scholar] [CrossRef]
- Aslani, F.; Sun, J.; Bromley, D.; Ma, G. Fiber-reinforced lightweight self-compacting concrete incorporating scoria aggregates at elevated temperatures. Struct. Concr. 2019, 20, 1022–1035. [Google Scholar] [CrossRef]
- Aslani, F.; Hou, L.; Nejadi, S.; Sun, J.; Abbasi, S. Experimental analysis of fiber-reinforced recycled aggregate self-compacting concrete using waste recycled concrete aggregates, polypropylene, and steel fibers. Struct. Concr. 2019, 20, 1670–1683. [Google Scholar] [CrossRef]
- Sun, J.; Lin, S.; Zhang, G.; Sun, Y.; Zhang, J.; Chen, C.; Morsy, A.M.; Wang, X. The effect of graphite and slag on electrical and mechanical properties of electrically conductive cementitious composites. Constr. Build. Mater. 2021, 281, 122606. [Google Scholar] [CrossRef]
- Sun, J.; Ma, Y.; Li, J.; Zhang, J.; Ren, Z.; Wang, X. Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder. J. Build. Eng. 2021, 43, 102544. [Google Scholar] [CrossRef]
- Hou, L.; Wu, S.; Zhang, G.; Tan, Y.; Wang, X. Literature Review of Digital Twins Applications in Construction Workforce Safety. Appl. Sci. 2021, 11, 339. [Google Scholar] [CrossRef]
- Sun, J.; Aslani, F.; Lu, J.; Wang, L.; Huang, Y.; Ma, G. Fresh and mechanical behaviour of developed fibre-reinforced lightweight engineered cementitious composites for 3D concrete printing containing hollow glass microspheres. Ceram. Int. 2021. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Yao, X.; Ren, Z.; Zhang, G.; Zhang, C.; Chen, X.; Ma, W.; Wang, X. Machine-Learning-Aided Prediction of Flexural Strength and ASR Expansion for Waste Glass Cementitious Composite. Appl. Sci. 2021, 11, 6686. [Google Scholar] [CrossRef]
Source Title | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CAADRIA | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 13 | |||
Automation in Construction | 2 | 1 | 4 | 2 | 1 | 10 | ||||||
IOP Conference Series: Earth and Environmental Science | 3 | 3 | 6 | |||||||||
ISARC | 1 | 3 | 1 | 1 | 6 | |||||||
Procedia Engineering | 2 | 2 | 4 | |||||||||
Sum | 0 | 1 | 1 | 4 | 4 | 2 | 7 | 4 | 5 | 7 | 4 | 39 |
Objective Category | Description | Sub-Objectives | Characteristic | Evaluations | Examples | Programming Method | Programming Language |
---|---|---|---|---|---|---|---|
1. Solve specific design tasks. | This objective is to solve individual design tasks creatively and efficiently within larger practical projects. |
|
|
| Automate design and production for practical tunnel projects [75]. | Grasshopper (in Rhino) and Dynamo (in Revit) used in the Application Programming Interfaces (API’s). | Visual programming language (VPL) |
Digital aided façade design [76]. | An add-in named GA (generative design) in Grasshopper. | VPL | |||||
Digital workflows in contemporary architecture and construction [81]. | Objected-oriented programming, functional programming, visual programming, and distributed visual programming [81], based on cases. | Textural programming language (TPL) and VPL | |||||
An algorithmic BIM approach in a traditional design studio [82]. | Python and AutoLisp are used to script algorithm; Rosetta is used to support BIM back-end. | TPL | |||||
BIM-integration of solar thermal systems [77]. | Dynamo in Revit. | VPL | |||||
BIM-based parametric modelling to Tapered Slip-Form System [78]. | SmartParts Script Language of Allplan (a BIM tool). | TPL | |||||
Parametric design of Shanghai Tower’s form and façade [79]. | Microsoft Visual C# that ran between Grasshopper and Revit [79]. | TPL. | |||||
BIM façade module for diagrid twisted structures [80]. | Dynamo in Revit. | VPL | |||||
2. Support design processes. | This objective aims to support design processes in BIM by building environments or systems integrating with GD in the context of BIM. |
|
|
| Generative design for building interiors using BIM [58]. | domain-specific language (DSLs) is used to script the design rules. | TPL |
Generative BIM workspace for conceptual design automation [84]. | C#.Net in Revit Add in. | TPL | |||||
Generative interior design using BIM [85]. | DSLs to script the design rules. | TPL | |||||
Automatic structural design of RC wall-slab buildings in BIM [86]. | Not mentioned. | N/A | |||||
Automated design and modelling for mass-customized timber structure housing [87]. | Grasshopper in Rhino. | VPL | |||||
From layout generation to construction document production of customised apartment plans [83]. | Existing grasshopper (GH) workflow nodes are used to script design rules, Python in GH is used to create new nodes and script the algorithm, and the processing language is used to develop the Graphic User Interface (GUI). | VPL and TPL | |||||
A novel construction waste reduction workflow using parametric design and module coordination [88]. | Existing nodes in GH are used to develop the algorithm. | VPL | |||||
Portable generative design for BIM [60]. | An Integrated Development Environment named Rosetta is used to support various TPLs as a front-end, and a series of CAD and BIM applications are connected as back-ends for GD model generation. | TPL | |||||
Design and analysis in a generative tool with multi back-ends [98]. | Same as the above. | TPL | |||||
Towards cloud informed robotics [89]. | Visual programming for parametric design. | VPL | |||||
A framework for a dimensional customization system [90]. | Not mentioned. | ||||||
A Green-BIM approach for adaptive building facade optimisation [91]. | Dynamo is used for information extraction; C# is used to develop compliance checking systems. | VPL and TPL | |||||
Virtual generative BIM workspace for maximising conceptual design innovation in the AEC industry [92]. | C#.Net programming. | TPL | |||||
Exploit AEC conceptual design innovation by integrating GD with BIM [93]. | C#.Net programming | TPL | |||||
G-BIM framework and development process for design automation [94]. | C#.Net programming | TPL | |||||
Integrated generative technique for brickworks interactive design [95]. | Grasshopper in rhino is used to script the algorithm. Processing is used to create the sketch tool. | VPL and TPL | |||||
Parametric and generative methods with BIM [96]. | C# | TPL | |||||
Design of parametric software tools [99] | Grasshopper in Rhino | VPL | |||||
Tool design for architectural design [100]. | Grasshopper in Rhino | VPL | |||||
Parametric design based on BIM for sustainable buildings [97]. | C# programming in Revit API | TPL |
Categories | Definitions | Languages | Advantages | Limitations |
---|---|---|---|---|
Visual programming languages (VPLs) | Any programming language that allows users to develop programs by manipulating visual elements interactively. |
|
|
|
Textural programming languages (TPLs) | Any programming language that uses lines of text, code, symbol, predefined syntax, etc. to develop programs. |
|
|
|
Software | Developer | BIM | Connectable to BIM | Plug-In or Stand-Alone | Applicable Programming Languages for Scripting GD | |
---|---|---|---|---|---|---|
VPLs | TPLs | |||||
Revit | Autodesk | Yes | N/A | Stand-alone | Dynamo | Python, C# in Revit API |
ArchiCAD | Graphisoft | Yes | N/A | Stand-alone | Grasshopper—Archicad Live Connection | C++ in ArchiCAD API |
Grasshopper | McNeel | No | Yes; by Lyrebird, etc. | Plug-in for Rhinoceros | Grasshopper | GhPython in Grasshopper API |
GenerativeComponents | Bentley | No | Yes. GenerativeComponents CONNECT Edition. | Stand-alone and Plug-in for MicroStation | Optimizer Node in CONNECTION Edition | GCScript, C# |
Programming Languages | Characteristics of Programming Languages on Fundamental Dimensions | Suitability for GD Component Development | ||
---|---|---|---|---|
Primitive | Combination | Abstraction | ||
VPLs Such as:
|
|
|
|
|
TPLs Such as:
|
|
|
|
|
Future Directions | Challenges | Potential Solutions |
---|---|---|
Develop more sophisticated and systematic GD-BIM to support more design processes. |
|
|
Reduce programming difficulties for designers. |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Wang, X.; Wang, J.; Xiang, X.; Sun, J. Generative Design in Building Information Modelling (BIM): Approaches and Requirements. Sensors 2021, 21, 5439. https://doi.org/10.3390/s21165439
Ma W, Wang X, Wang J, Xiang X, Sun J. Generative Design in Building Information Modelling (BIM): Approaches and Requirements. Sensors. 2021; 21(16):5439. https://doi.org/10.3390/s21165439
Chicago/Turabian StyleMa, Wei, Xiangyu Wang, Jun Wang, Xiaolei Xiang, and Junbo Sun. 2021. "Generative Design in Building Information Modelling (BIM): Approaches and Requirements" Sensors 21, no. 16: 5439. https://doi.org/10.3390/s21165439
APA StyleMa, W., Wang, X., Wang, J., Xiang, X., & Sun, J. (2021). Generative Design in Building Information Modelling (BIM): Approaches and Requirements. Sensors, 21(16), 5439. https://doi.org/10.3390/s21165439