An Ensembled Anomaly Detector for Wafer Fault Detection
Abstract
:1. Introduction
- Definition of an ensemble method employing both univariate (ANOVA) and multivariate (OCSVM) approaches;
- Comparison of three balancing criteria for the ensembled method;
- Comparison of the proposed method with other classic anomaly detection techniques;
- Publication of two real semiconductor manufacturing scenario datasets.
Related Work
2. Materials and Methods
2.1. Dataset Overview
2.2. Dataset-1 (D1) Definition
2.3. Dataset-2 (D2) Definition
2.4. Dataset Preprocessing
2.5. Time Preprocessing
2.6. Proposed Anomaly Detection Method
- Measurements with an anomalous behavior will likely have a high number of votes from ANOVA;
- The voting system is simple and the voters (i.e., OCSVM models and the 5 statistics) have all the same weights.
- Anomalies due to a combination of several measurements may not be detected by UVA OCSVM models;
- The number of the models increases with the number of parameters, which can rapidly increase the required computational power and time.
2.7. Balancing the Voting System of the Ensembler
- EWC: equally weighted criterion: 50% of the response is given by MVA and 50% is given by UVA;
- MSC: MVA as a statistic criterion: MVA response is weighted as one of the statistics computed in UVA;
- SBC: score-based criterion: weight MVA using the OCSVM score.
2.7.1. EWC: Equally Weighted Criterion
2.7.2. MSC: MVA as a Statistic Criterion
2.7.3. SBC: Score-Based Criterion
3. Results
3.1. EWC: Equally Weighted Criterion
3.2. MSC: MVA as a Statistic Criterion
3.3. SBC: Score-Based Criterion
3.4. Experimental Results for the Balancing Criteria
3.5. Experimental Results Comparing Other Methods
4. Conclusions
- Definition of an ensemble method employing both univariate (ANOVA) and multivariate (OCSVM) approaches;
- Comparison of three balancing criteria for the ensembled method;
- Comparison of the proposed method with other classic anomaly detection techniques;
- Publication of two real semiconductor manufacturing scenario datasets.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABOD | Angle Based Outlier Detection |
ANOVA | ANalysis Of VAriance |
COPOD | Copula-Based Outlier Detection |
D1 | Dataset-1 |
D2 | Dataset-2 |
DAGMM | Deep Autoencoding Gaussian Mixture Model |
DBN | Deep Belief Networks |
EWC | Equally Weighted Criterion |
FABOD | Fast Angle Based Outlier Detection |
FD | Fault Detection |
FDC | Fault Detection and Classification |
GMM | Gaussian Mixture Model |
IF | Isolation Forest |
LD | Linear Dichroism |
LOF | Local Outlier Factor |
The MVA score for a single wafer w at the step t | |
The MVA response for a single wafer w at the step t | |
MSC | MVA as a Statistic Criterion |
MTS | Multivariate Time Series |
MVA | Multivariate Approach |
NA | Negative Accumulator |
OCSVM | One Class Support Vector Machine |
PA | Positive Accumulator |
PAT | Part Average Testing |
PCA | Principal Component Analysis |
PP | Production Process |
SALAD | Stacked Autoencoder Learning for Anomaly Detection |
SBC | Score Based Criterion |
SBL | Statistical Bin Limits |
SPC | Statistical Process Control |
The UVA score for a single wafer w at the step t | |
UVA | Univariate Approach |
Appendix A. Dataset Masking and Anonymization
References
- Viagrande, L.C.; Milotta, F.L.M.; Giuffrè, P.; Bruno, G.; Vinciguerra, D.; Gallo, G. Semisupervised Classification of Anomalies Signatures in Electrical Wafer Sorting (EWS) Maps. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications—Volume 5: VISAPP, Valletta, Malta, 27–29 February 2020; pp. 278–285. [Google Scholar] [CrossRef]
- Automotive Electronic Council. Guidelines for Part Average Testing. Available online: http://www.aecouncil.com/Documents/AEC_Q001_Rev_D.pdf (accessed on 12 August 2021).
- Automotive Electronic Council. Guidelines for Statistical Yield Analysis. Available online: http://www.aecouncil.com/Documents/AEC_Q002_Rev_B1.pdf (accessed on 12 August 2021).
- Muriel, S.; Garcia, P.; Maire-Richard, O.; Monleon, M.; Recio, M. Statistical bin analysis on wafer probe. In Proceedings of the 2001 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (IEEE Cat. No. 01CH37160), Munich, Germany, 23–24 April 2001; IEEE: New York, NY, USA, 2001; pp. 187–192. [Google Scholar]
- Illyes, S.; Baglee, D. Statistical bin limits-an approach to wafer disposition in IC fabrication. IEEE Trans. Semicond. Manuf. 1992, 5, 59–61. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.; Kim, R.; Park, Y.; Kang, J. DeepNAP: Deep neural anomaly pre-detection in a semiconductor fab. Inf. Sci. 2018, 457, 1–11. [Google Scholar] [CrossRef]
- Elsisi, M.; Tran, M.Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Deep Learning-Based Industry 4.0 and Internet of Things towards Effective Energy Management for Smart Buildings. Sensors 2021, 21, 1038. [Google Scholar] [CrossRef] [PubMed]
- Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Reliable industry 4.0 based on machine learning and IOT for analyzing, monitoring, and securing smart meters. Sensors 2021, 21, 487. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18. [Google Scholar]
- Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134. [Google Scholar] [CrossRef]
- Susto, G.A.; Terzi, M.; Beghi, A. Anomaly detection approaches for semiconductor manufacturing. Procedia Manuf. 2017, 11, 2018–2024. [Google Scholar] [CrossRef]
- Lee, Y.J.; Yeh, Y.R.; Wang, Y.C.F. Anomaly detection via online oversampling principal component analysis. IEEE Trans. Knowl. Data Eng. 2012, 25, 1460–1470. [Google Scholar] [CrossRef] [Green Version]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Kriegel, H.P.; Schubert, M.; Zimek, A. Angle-based outlier detection in high-dimensional data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 444–452. [Google Scholar]
- Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000; pp. 93–104. [Google Scholar]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A.; Bottou, L. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Hong, S.J.; Lim, W.Y.; Cheong, T.; May, G.S. Fault detection and classification in plasma etch equipment for semiconductor manufacturing e-diagnostics. IEEE Trans. Semicond. Manuf. 2011, 25, 83–93. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef] [PubMed]
- St, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar]
- Dua, D.; Graff, C. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml (accessed on 12 August 2021).
- Zhao, Y.; Nasrullah, Z.; Li, Z. PyOD: A Python Toolbox for Scalable Outlier Detection. J. Mach. Learn. Res. 2019, 20, 1–7. [Google Scholar]
- Li, Z.; Zhao, Y.; Botta, N.; Ionescu, C.; Hu, X. COPOD: Copula-based outlier detection. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; IEEE: New York, NY, USA, 2020; pp. 1118–1123. [Google Scholar]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; IEEE: New York, NY, USA, 2008; pp. 413–422. [Google Scholar]
D1 | D2 | |||||
---|---|---|---|---|---|---|
Actual | Abnormal | Normal | Abnormal | Normal | ||
Predicted | ||||||
EWC | Abnormal | 2 | 1 | 367 | 37 | |
Normal | 0 | 5101 | 0 | 752 | ||
MSC | Abnormal | 1 | 0 | 367 | 14 | |
Normal | 1 | 5102 | 0 | 775 | ||
SBC | Abnormal | 2 | 0 | 367 | 5 | |
Normal | 0 | 5102 | 0 | 784 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furnari, G.; Vattiato, F.; Allegra, D.; Milotta, F.L.M.; Orofino, A.; Rizzo, R.; De Palo, R.A.; Stanco, F. An Ensembled Anomaly Detector for Wafer Fault Detection. Sensors 2021, 21, 5465. https://doi.org/10.3390/s21165465
Furnari G, Vattiato F, Allegra D, Milotta FLM, Orofino A, Rizzo R, De Palo RA, Stanco F. An Ensembled Anomaly Detector for Wafer Fault Detection. Sensors. 2021; 21(16):5465. https://doi.org/10.3390/s21165465
Chicago/Turabian StyleFurnari, Giuseppe, Francesco Vattiato, Dario Allegra, Filippo Luigi Maria Milotta, Alessandro Orofino, Rosetta Rizzo, Rosaria Angela De Palo, and Filippo Stanco. 2021. "An Ensembled Anomaly Detector for Wafer Fault Detection" Sensors 21, no. 16: 5465. https://doi.org/10.3390/s21165465
APA StyleFurnari, G., Vattiato, F., Allegra, D., Milotta, F. L. M., Orofino, A., Rizzo, R., De Palo, R. A., & Stanco, F. (2021). An Ensembled Anomaly Detector for Wafer Fault Detection. Sensors, 21(16), 5465. https://doi.org/10.3390/s21165465