Machine Learning-Based Diagnosis in Laser Resonance Frequency Analysis for Implant Stability of Orthopedic Pedicle Screws
Abstract
:1. Introduction
2. L-RFA Testing for Polyaxial Pedicle Screw
2.1. Experimental Setup and Sample
2.2. Influence of Screw Head Mobility of Polyaxial Pedicle Screws
2.3. Relationship between Insertion Torque and Natural Frequency in Polyaxial Pedicle Screws
3. Machine Learning-Based Diagnosis for L-RFA
3.1. Analysis Scheme with Machine Learning
3.2. Characterization of Machine Learning-Based Diagnosis Method
3.3. Demonstration of Diagnosis for Polyaxial Pedicle Screw
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Deyo, R.A.; Gray, D.T.; Kreuter, W.; Mirza, S.; Martin, B.I. United States trends in lumbar fusion surgery for degenerative conditions. Spine 2005, 30, 1441–1445. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.N.; Lurie, J.D.; Olson, P.R.; Bronner, K.K.; Fisher, E.S. United States’ trends and regional variations in lumbar spine surgery: 1992–2003. Spine 2006, 32, 2702–2714. [Google Scholar] [CrossRef] [PubMed]
- Bredow, J.; Boese, C.K.; Werner, C.M.L.; Siewe, J.; Löhrer, L.; Zarghooni, K.; Eysel, P.; Scheyerer, M.J. Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery. Arch. Orthop. Trauma Surg. 2016, 136, 1063–1067. [Google Scholar] [CrossRef]
- Yagi, M.; Ames, C.P.; Keefe, M.; Hosogane, N.; Smith, J.S.; Shaffrey, C.I.; Schwab, F.; Lafage, V.; Shay, B.R.; Matsumoto, M.; et al. International Spine Study Group (ISSG). A cost-effectiveness comparisons of adult spinal deformity surgery in the United States and Japan. Eur. Spine J. 2018, 27, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Kwok, A.W.L.; Finkelstein, J.A.; Woodside, T.; Hearn, T.C.; Hu, R.W. Insertional torque and pull-out strengths of conical and cylindrical pedicle screws in cadaveric bone. Spine 1996, 21, 2429–2434. [Google Scholar] [CrossRef]
- Mueller, T.L.; Van Lenthe, G.H.; Stauber, M.; Gratzke, C.; Eckstein, F.; Müller, R. Regional age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population. Bone 2009, 45, 882–891. [Google Scholar] [CrossRef]
- Lei, W.; Wu, Z. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae. Eur. Spine J. 2006, 15, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Ab-Lazid, R.; Perilli, E.; Ryan, M.K.; Costi, J.J. Does cancellous screw insertion torque depend on bone mineral density and/or microarchitecture? J. Bimomech. 2014, 47, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Mikami, K.; Nakashima, D.; Kikuchi, S.; Kitamura, T.; Hasegawa, N.; Nagura, T.; Nishikino, M. Stability diagnosis of orthopedic implants based on resonance frequency analysis with fiber transmission of nanosecond laser pulse and acceleration sensor. Proc. SPIE 2020, 11233, 112330O. [Google Scholar] [CrossRef]
- Nakashima, D.; Mikami, K.; Kikuchi, S.; Nishikino, M.; Kitamura, T.; Hasegawa, N.; Matsumoto, M.; Nakamura, M.; Nagura, T. Laser resonance frequency analysis of pedicle screw stability: A cadaveric model bone study. J. Orthop. Res. 2021, 39, 2474–2484. [Google Scholar] [CrossRef]
- Kikuchi, S.; Mikami, K.; Nakashima, D.; Kitamura, T.; Hasegawa, N.; Nishikino, M.; Kanaji, A.; Nakamura, M.; Nagura, T. Laser resonance frequency analysis: An measurement approach to evaluate acetabular cup stability during surgery. Sensors 2019, 19, 4876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurahashi, S.; Mikami, K.; Kitamura, T.; Hasegawa, N.; Okada, H.; Kondo, S.; Nishikino, M.; Kawachi, T.; Shimada, Y. Demonstration of 25-Hz-inspection-speed laser remote sensing for internal concrete defects. J. Appl. Remote Sens. 2018, 12, 15009. [Google Scholar] [CrossRef] [Green Version]
- Mikami, K.; Hasegawa, N.; Okada, H.; Kondo, S.; Nishikino, M.; Kawachi, T. Flash-lamp-pumped 4 J, 50 Hz Nd:YAG nanosecond laser system for mobile and transportable equipment. Jpn. J. Appl. Phys. 2017, 56, 082701. [Google Scholar] [CrossRef]
- Mikami, K.; Hasegawa, N.; Kitamura, T.; Okada, H.; Kondo, S.; Nishikino, M. Characterization of laser-induced vibration on concrete surface toward highly efficient laser remote sensing. Jpn. J. Appl. Phys. 2020, 59, 076502. [Google Scholar] [CrossRef]
- Wang, Y.; Jhang, D.-F.; Chu, T.-S.; Tsao, C.-H.; Tsai, C.-H.; Chuang, C.-C.; Ger, T.-R.; Chen, L.-T.; Chang, W.-S.W.; Liao, L.-D. An adjustable dark-field acoustic-resolution photoacoustic imaging system with fiber bundle-based illumination. Biosensors 2021, 11, 262. [Google Scholar] [CrossRef]
- Saha, M.; Dremin, V.; Rafailov, I.; Dunaev, A.; Sokolovski, S.; Rafailov, E. Wearable laser doppler flowmetry sensor: A feasibility study with smoker and non-smoker volunteers. Biosensors 2020, 10, 201. [Google Scholar] [CrossRef]
- Lippmann, R.K. The use of auscultatory percussion for the examination of fractures. JBJS 1932, 14, 118–126. [Google Scholar]
- Aparicio, C.; Lang, N.P.; Rangert, B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clin. Oral Implants Res. 2006, 17 (Suppl. 2), 2–7. [Google Scholar] [CrossRef]
- Meredith, N.; Alleyne, D.; Cawley, P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implants Res. 1996, 7, 261–267. [Google Scholar] [CrossRef]
- Valderrama, P.; Oates, T.W.; Jones, A.A.; Simpson, J.; Schoolfield, J.D.; Cochran, D.L. Evaluation of two different resonance frequency devices to detect implant stability: A clinical trial. J. Periodontol. 2007, 78, 262–272. [Google Scholar] [CrossRef]
- Huwiler, M.A.; Pjetursson, B.E.; Bosshardt, D.D.; Salvi, G.E.; Lang, N.P. Resonance frequency analysis in relation to jawbone characteristics and during early healing of implant installation. Clin. Oral Implants Res. 2007, 18, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, D.; Ishii, K.; Nishiwaki, Y.; Kawana, H.; Jinzaki, M.; Matsumoto, M.; Nakamura, M.; Nagura, T. Quantitative CT-based bone strength parameters for the prediction of novel spinal implant stability using resonance frequency analysis: A cadaveric study involving experimental micro-CT and clinical multislice CT. Eur. Radiol. Exp. 2019, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sennerby, L.; Meredith, N. Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontology 2000 2008, 47, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Lakes, R.S. A noninvasive technique for detecting stress waves in bone using the piezoelectric effect. IEEE Trans. Biomed. Eng. 1977, 24, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Nokes, L.D. The use of low-frequency vibration measurement in orthopaedics. Proc. Inst. Mech. Eng. H 1999, 213, 271–290. [Google Scholar] [CrossRef]
- Georgiou, A.P.; Cunningham, J.L. Accurate diagnosis of hip prosthesis loosening using a vibrational technique. Clin. Biomech. 2001, 16, 315–323. [Google Scholar] [CrossRef]
- Pastrav, L.C.; Jaecques, S.V.; Jonkers, I.; Perre, G.V.; Mulier, M. In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses. J. Orthop. Surg. Res. 2009, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Henys, P.; Capek, L.; Fencl, J.; Prochazka, E. Evaluation of acetabular cup initial fixation by using resonance frequency principle. Proc. Inst. Mech. Eng. H 2015, 229, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.; Bosc, R.; Meningaud, J.P.; Hernigou, P.; Hait, G. Assessing the Acetabular Cup Implant Primary Stability by Impact Analyses: A Cadaveric Study. PLoS ONE 2016, 11, e0166778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henys, P.; Capek, L. Impact Force, Polar Gap and Modal Parameters Predict Acetabular Cup Fixation: A Study on a Composite Bone. Ann. Biomed. Eng. 2018, 46, 590–604. [Google Scholar] [CrossRef]
- Tijou, A.; Rosi, G.; Hernigou, P.; F-Lachaniette, C.-H.; Haiat, G. Ex Vivo Evaluation of Cementless Acetabular Cup Stability Using Impact Analyses with a Hammer Instrumented with Strain Sensors. Sensors 2017, 18, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paik, H.; Dmitriev, A.E.; Lehman, R.A.L., Jr.; Gaume, R.E.; Ambati , D.V.; Kang , D.G.; Lenke , L.G. The biomechanical effect of pedicle screw hubbing on pull-out resistance in the thoracic spine. Spine J. 2012, 12, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, D.; Ishii, K.; Matsumoto, M.; Nakamura, M.; Nagura, T. A study on the use of the Osstell apparatus to evaluate pedicle screw stability: An in-vitro study using micro-CT. PLoS ONE 2018, 13, e0199362. [Google Scholar] [CrossRef]
- Matsukawa, K.; Yato, Y.; Kato, T.; Imabayashi, H.; Asazuma, T.; Nemoto, K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine 2014, 39, E240–E245. [Google Scholar] [CrossRef]
- Daftari, T.K.; Horton, W.C.; Hutton, W.C. Correlations between screw hole preparation, torque of insertion, and pull-out strength for spinal screws. J. Spinal Disord. 1994, 7, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Santosa, F.; Symes, W.W. Linear inversion of band-limited reflection seismograms. J. Sci. Stat. Comput. 1986, 7, 1307–1330. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Vapnik, V. Pattern Recognition using generalized portrait method. Autom. Remote Control 1963, 24, 774–780. [Google Scholar]
- Bernhard, E.B.; Isabelle, M.G.; Vladimir, N.V. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory (COLT ’92), Pittsburgh, PA, USA, 27–29 July 1992; Association for Computing Machinery: New York, NY, USA, 1992; pp. 144–152. [Google Scholar] [CrossRef]
Number of Selections | Frequency Range (Hz) | Explanatory Variable |
---|---|---|
2000 | 1000–5000 | Peak frequency |
1618 | 500–1000 | Dispersion |
1553 | 500–1000 | Skewness |
1510 | 150–500 | Centroid frequency |
1490 | 5000–10,000 | Average power |
Number of Selections | Frequency Range (Hz) | Explanatory Variable |
---|---|---|
1455 | 1500–6500 | Peak frequency |
1388 | 1500–6500 | Centroid frequency |
1344 | 0–25,000 | Skewness |
1290 | 0–25,000 | Centroid frequency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikami, K.; Nemoto, M.; Nagura, T.; Nakamura, M.; Matsumoto, M.; Nakashima, D. Machine Learning-Based Diagnosis in Laser Resonance Frequency Analysis for Implant Stability of Orthopedic Pedicle Screws. Sensors 2021, 21, 7553. https://doi.org/10.3390/s21227553
Mikami K, Nemoto M, Nagura T, Nakamura M, Matsumoto M, Nakashima D. Machine Learning-Based Diagnosis in Laser Resonance Frequency Analysis for Implant Stability of Orthopedic Pedicle Screws. Sensors. 2021; 21(22):7553. https://doi.org/10.3390/s21227553
Chicago/Turabian StyleMikami, Katsuhiro, Mitsutaka Nemoto, Takeo Nagura, Masaya Nakamura, Morio Matsumoto, and Daisuke Nakashima. 2021. "Machine Learning-Based Diagnosis in Laser Resonance Frequency Analysis for Implant Stability of Orthopedic Pedicle Screws" Sensors 21, no. 22: 7553. https://doi.org/10.3390/s21227553
APA StyleMikami, K., Nemoto, M., Nagura, T., Nakamura, M., Matsumoto, M., & Nakashima, D. (2021). Machine Learning-Based Diagnosis in Laser Resonance Frequency Analysis for Implant Stability of Orthopedic Pedicle Screws. Sensors, 21(22), 7553. https://doi.org/10.3390/s21227553