90% Accuracy for Photoplethysmography-Based Non-Invasive Blood Glucose Prediction by Deep Learning with Cohort Arrangement and Quarterly Measured HbA1c
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Model Architecture
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkar, K.; Ahmad, D.; Singha, S.K.; Ahmad, M. Design and implementation of a noninvasive blood glucose monitoring device. In Proceedings of the 2018 21st International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2018; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Mekonnen, B.K.; Yang, W.; Hsieh, T.H.; Liaw, S.K.; Yang, F.L. Accurate prediction of glucose concentration and identification of major contributing features from hardly distinguishable near-infrared spectroscopy. Biomed. Signal Process. Control 2020, 59, 101923. [Google Scholar] [CrossRef]
- Maier, J.S.; Walker, S.A.; Fantini, S.; Franceschini, M.A.; Gratton, E. Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared. Opt. Lett. 1994, 19, 2062–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamada, J.A.; Garg, S.; Jovanovic, L.; Pitzer, K.R.; Fermi, S.; Potts, R.O. Cygnus Research Team; Cygnus Research Team. Noninvasive glucose monitoring: Comprehensive clinical results. JAMA 1999, 282, 1839–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klonoff, D.C. Noninvasive blood glucose monitoring. Diabetes Care 1997, 20, 433–437. [Google Scholar] [CrossRef]
- Larin, K.V.; Eledrisi, M.S.; Motamedi, M.; Esenaliev, R.O. Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects. Diabetes Care 2002, 25, 2263–2267. [Google Scholar] [CrossRef] [Green Version]
- Yadav, J.; Rani, A.; Singh, V.; Murari, B.M. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed. Signal Process. Control 2015, 18, 214–227. [Google Scholar] [CrossRef]
- Abd Salam, N.A.; bin Mohd Saad, W.H.; Manap, Z.B.; Salehuddin, F. The evolution of non-invasive blood glucose monitoring system for personal application. J. Telecommun. Electron. Comput. Eng. 2016, 8, 59–65. [Google Scholar]
- Monte-Moreno, E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif. Intell. Med. 2011, 53, 127–138. [Google Scholar] [CrossRef]
- Blank, T.B.; Ruchti, T.L.; Lorenz, A.D.; Monfre, S.L.; Makarewicz, M.R.; Mattu, M.; Hazen, K. Clinical results from a noninvasive blood glucose monitor. In Proceedings of the Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, San Jose, CA, USA, 23 May 2002; International Society for Optics and Photonics: Bellingham, WA, USA, 2002. [Google Scholar]
- Paul, B.; Manuel, M.P.; Alex, Z.C. Design and development of non invasive glucose measurement system. In Proceedings of the 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1), Pune, India, 6 August 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Ramasahayam, S.; Arora, L.; Chowdhury, S.R.; Anumukonda, M. FPGA based system for blood glucose sensing using photoplethysmography and online motion artifact correction using adaline. In Proceedings of the 2015 9th International Conference on Sensing Technology (ICST), Auckland, New Zealand, 8–10 December 2015; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Rachim, V.P.; Chung, W.-Y. Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring. Sens. Actuators B Chem. 2019, 286, 173–180. [Google Scholar] [CrossRef]
- Maruo, K.; Oota, T.; Tsurugi, M.; Nakagawa, T.; Arimoto, H.; Tamura, M.; Ozaki, Y.; Yamada, Y. New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring. Appl. Spectrosc. 2006, 60, 441–449. [Google Scholar] [CrossRef]
- Alian, A.A.; Shelley, K.H. Photoplethysmography. Best Prac. Res. Clin. Anaesthesiol. 2014, 28, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Joshi, A.M.; Mohanty, S.P. iGLU 1.0: An Accurate Non-Invasive Near-Infrared Dual Short Wavelengths Spectroscopy based Glucometer for Smart Healthcare. arXiv 2019, arXiv:1911.04471. [Google Scholar]
- Bunescu, R.; Struble, N.; Marling, C.; Shubrook, J.; Schwartz, F. Blood glucose level prediction using physiological models and support vector regression. In Proceedings of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Georga, E.I.; Protopappas, V.C.; Polyzos, D.; Fotiadis, D.I. A predictive model of subcutaneous glucose concentration in type 1 diabetes based on random forests. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 December 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Tomczak, J.M. Gaussian process regression with categorical inputs for predicting the blood glucose level. In Advances in Systems Science; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Yadav, J.; Rani, A.; Singh, V.; Mohan Murari, B. Investigations on multisensor-based noninvasive blood glucose measurement system. J. Med. Devices 2017, 11. [Google Scholar] [CrossRef]
- Paneni, F.; Beckman, J.A.; Creager, M.A.; Cosentino, F. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur. Heart J. 2013, 34, 2436–2443. [Google Scholar] [CrossRef]
- Benichou, T.; Pereira, B.; Mermillod, M.; Tauveron, I.; Pfabigan, D.; Maqdasy, S.; Dutheil, F. Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0195166. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: Abbreviated report of a WHO consultation. In WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Chu, J.; Yang, W.T.; Hsieh, T.H.; Yang, F.L. One-minute finger pulsation measurement for diabetes rapid screening with 1.3% to 13% false-negative prediction rate. Biomed. Stat. Inform. 2021, 6, 8. [Google Scholar] [CrossRef]
- Navakatikyan, M.A.; Barrett, C.J.; Head, G.A.; Ricketts, J.H.; Malpas, S.C. A real-time algorithm for the quantification of blood pressure waveforms. IEEE Trans. Biomed. Eng. 2002, 49, 662–670. [Google Scholar] [CrossRef]
- Serre, T.; Wolf, L.; Bileschi, S.; Riesenhuber, M.; Poggio, T. Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 411–426. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–9. [Google Scholar]
- Riesenhuber, M.; Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 1999, 2, 1019–1025. [Google Scholar] [CrossRef]
- Serre, T.; Kouh, M.; Cadieu, C.; Knoblich, U.; Kreiman, G.; Poggio, T. A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex. MIT-CSAIL-TR-2005-082. 2007. Available online: https://dspace.mit.edu/handle/1721.1/36407 (accessed on 17 November 2021).
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Clarke, W.L.; Cox, D.; Gonder-Frederick, L.A.; Carter, W.; Pohl, S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 1987, 10, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhou, Y.; Zhou, Z.; Liu, X.; Zou, H.; Zhang, P.; Spanos, C.J.; Zhang, L. SugarMate: Non-intrusive blood glucose monitoring with smartphones. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–27. [Google Scholar] [CrossRef]
- Johnston, L.; Wang, G.; Hu, K.; Qian, C.; Liu, G. Advances in biosensors for continuous glucose monitoring towards wearables. Front. Bioeng. Biotechnol. 2021, 9, 733810. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Number of Subjects | Prediction Accuracy (Ratio in Zone A of CEG) | Subjects Splitting for Modeling | Input Data | Method | Age of Population |
---|---|---|---|---|---|---|
E. Monte-Moreno [9] (2011) | 410 subjects (79 diabetes) | 87.71% | Universal model (not split) | Kaiser-Teager energy, spectral entropy, fast Fourier transform, energy profile, age, gender, BMI, SpO2, HR | Linear regression, support vector machine, random Forest, neural network | Age 9 to 80 (mean ± SD = 37.97 ± 13.32) |
P. Jain et al. [16] (2019) | 190 (80 healthy, 58 diabetics, 52 prediabetics) | 94% | Universal model (not split) | Three-channel of PPG voltage value | Deep neural network | Age 17 to 77 (mean ± SD n/a) |
S. Ramasahayam [12] (2015) | 55 subjects | 95.38% | Universal model (not split) | Optical densities | FPGA implementation of ANN | n/a |
J. Yadav et al. [21] (2012) | 50 normal subjects | 86.01% | Universal model (not split) | Kaiser-Teager energy, spectral entropy, hr, person-specific information, galvanic skin response, skin temperature | Multi linear regression, artificial neural network | Age 21 to 30 (mean ± SD = 24 ± 3) |
V. P. Rachim et al. [13] (2019) | 12 healthy subjects | 100% | Personalized model | 24 features extracted from PPG (optical density, Kaiser-Teager, pulsatile component) | Linear partial least squares regression | n/a |
R. Bunescu et al. [17] (2013) | 10 subjects with type 1 diabetes | 19.5 RMSE (on BGL 30 min in the future) | Universal model (not split) | Meal absorption dynamics, insulin dynamics, glucose dynamics, ARIMA generated feature | Support vector machine | n/a |
This Work | 2538 (1682 with medication, 856 w/o medication) | 60.6–94.3% | PPG data with cohort arrangement (with and w/o medication) | Fast Fourier transform, pulse morphological, physiological, age | One-dimensional CNN with micro and macro training | Age 38 to 80 (mean ± SD = 63.15 ± 9.67) |
Cohort | BG (mg/dL, Mean ± SD) | HbA1c (%, Mean ± SD) | Age (Years, Mean ± SD) | BMI (kg/m2) | W_cir * (cm, Mean ± SD) | |
---|---|---|---|---|---|---|
Total of 2538 Subjects | Subjects with medication (1682 subjects) | 136.1 ± 43.6 | 7.3 ± 1.5 | 65 ± 9 | 25 ± 4.1 | 86.2 ± 10.2 |
Subjects w/o medication (856 subjects) | 103.3 ± 22.0 | 5.9 ± 0.8 | 59 ± 10 | 23.6 ± 3.5 | 80.3 ± 9.6 |
Data Set | Subject Count | CEG Zone A (%) | RMSE (mg/dL) | MAE (mg/dL) | MAPE (%) | ±10% | |
---|---|---|---|---|---|---|---|
All (No HbA1c) | 2538 | 60.6 | 36.7 | 25.4 | 19 | 0.06 | 0.33 |
All (with HbA1c) | 2538 | 76.9 | 30.5 | 18.9 | 15 | 0.42 | 0.50 |
with Medication (No HbA1c) | 1682 | 53.3 | 44.4 | 31.9 | 23 | −0.09 | 0.28 |
with Medication (with HbA1c) | 1682 | 72.2 | 32.1 | 21.7 | 16 | 0.39 | 0.43 |
w/o Medication (No HbA1c) | 856 | 86.6 | 19.7 | 11.8 | 11 | −0.05 | 0.6 |
w/o Medication (with HbA1c) | 856 | 94.2 | 12.4 | 8.9 | 8 | 0.71 | 0.6 |
Training Loss | Testing Loss | Difference (Test-Train) | |
---|---|---|---|
All (No HbA1c) | 884 | 1534 | 650 |
All (with HbA1c) | 442 | 950 | 508 |
with medication (No HbA1c) | 292 | 2176 | 1884 |
with medication (with HbA1c) | 130 | 1052 | 922 |
w/o medication (No HbA1c) | 57 | 485 | 428 |
w/o medication (with HbA1c) | 75 | 165 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, J.; Yang, W.-T.; Lu, W.-R.; Chang, Y.-T.; Hsieh, T.-H.; Yang, F.-L. 90% Accuracy for Photoplethysmography-Based Non-Invasive Blood Glucose Prediction by Deep Learning with Cohort Arrangement and Quarterly Measured HbA1c. Sensors 2021, 21, 7815. https://doi.org/10.3390/s21237815
Chu J, Yang W-T, Lu W-R, Chang Y-T, Hsieh T-H, Yang F-L. 90% Accuracy for Photoplethysmography-Based Non-Invasive Blood Glucose Prediction by Deep Learning with Cohort Arrangement and Quarterly Measured HbA1c. Sensors. 2021; 21(23):7815. https://doi.org/10.3390/s21237815
Chicago/Turabian StyleChu, Justin, Wen-Tse Yang, Wei-Ru Lu, Yao-Ting Chang, Tung-Han Hsieh, and Fu-Liang Yang. 2021. "90% Accuracy for Photoplethysmography-Based Non-Invasive Blood Glucose Prediction by Deep Learning with Cohort Arrangement and Quarterly Measured HbA1c" Sensors 21, no. 23: 7815. https://doi.org/10.3390/s21237815
APA StyleChu, J., Yang, W. -T., Lu, W. -R., Chang, Y. -T., Hsieh, T. -H., & Yang, F. -L. (2021). 90% Accuracy for Photoplethysmography-Based Non-Invasive Blood Glucose Prediction by Deep Learning with Cohort Arrangement and Quarterly Measured HbA1c. Sensors, 21(23), 7815. https://doi.org/10.3390/s21237815