Design of mmWave Directional Antenna for Enhanced 5G Broadcasting Coverage
Abstract
:1. Introduction
2. System Model
2.1. Broadcast Coverage System
2.2. Antenna Configuration in the Tunnel
3. Antenna Structure and MOGA Optimization
3.1. SIW Technology
3.2. Array Form and Semicircular Extension Structure
3.3. MOGA Optimization Scheme
3.4. Optimization Parameters
4. Simulation and Test Results
4.1. HFSS Simulation Results
4.2. Anechoic Chamber Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benenati, N.; Desogus, C.; Scopelliti, P.; Iradier, P.; Montalban, J.; Murroni, M. Group-Oriented Broadcasting of Augmented Reality Services over 5G New Radio. In Proceedings of the 2019 IEEE Broadcast Symposium (BTS), Hartford, CT, USA, 1–3 October 2019; pp. 1–7. [Google Scholar]
- Garro, E.; Feuntes, M.; Carcel, J.L.; Chen, H.; Mi, D.; Tesema, F.; Gimenez, J.J.; Gomez, B.D. 5G Mixed Mode: NR Multicast-Broadcast Services. IEEE Trans. Broadcasting 2020, 66, 390–403. [Google Scholar] [CrossRef]
- Säily, M.; Estevan, C.B.; Gimenez, J.J.; Tese, A.F.; Gou, W.; Gomez, D.G.; Mi, D. 5G Radio Access Network Architecture for Terrestrial Broadcast Services. IEEE Trans. Broadcasting 2020, 66, 404–415. [Google Scholar] [CrossRef]
- He, D.; Wang, W.; Xu, Y.; Huang, X.; Cheng, H.; Duan, X.; Huang, Y.; Hong, H.; Zhang, Y.; Zhang, W. Overview of Physical Layer Enhancement for 5G Broadcast in Release 16. IEEE Trans. Broadcasting 2020, 66, 471–480. [Google Scholar] [CrossRef]
- Barquero, D.G.; Li, W.; Fuentes, M.; Xiong, J.; Aranti, G.; Akamine, C.; Wang, J. IEEE Transactions on Broadcasting Special Issue on: 5G for Broadband Multimedia Systems and Broadcasting. IEEE Trans. Broadcasting 2019, 65, 351–355. [Google Scholar] [CrossRef]
- Meixner, C.C.; Khalili, H.; Antoniou, K.; Siddiqui, M.S.; Papageorgiou, A.; Albanese, A.; Cruschelli, P.; Carrozzo, G.; Vignaroli, L.; Ulisses, A.; et al. Deploying a Novel 5G-Enabled Architecture on City Infrastructure for Ultra-High Definition and Immersive Media Production and Broadcasting. IEEE Trans. Broadcasting 2019, 65, 392–403. [Google Scholar] [CrossRef]
- Keltsch, M.; Prokesch, S.; Gordo, O.P.; Serrano, J.; Phan, T.K.; Fritzsch, I. Remote Production and Mobile Contribution Over 5G Networks: Scenarios, Requirements and Approaches for Broadcast Quality Media Streaming. In Proceedings of the 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia, Spain, 6–8 June 2018; pp. 1–7. [Google Scholar]
- Li, G.; Ai, B.; Guan, K.; He, R.; Zhong, Z.; Tian, L.; Dou, J. Path loss modeling and fading analysis for channels with various antenna setups in tunnels at 30 GHz band. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–5. [Google Scholar]
- Sim, G.H.; Klos, S.; Asadi, A.; Klein, A.; Hollick, M. An Online Context-Aware Machine Learning Algorithm for 5G mmWave Vehicular Communications. IEEE/ACM Trans. Netw. 2018, 26, 2487–2500. [Google Scholar] [CrossRef]
- Guan, K.; Ai, B.; Peng, B.; He, D.; Li, G.; Yang, J.; Zhong, Z.; Kürner, Y. Towards Realistic High-Speed Train Channels at 5G Millimeter-Wave Band—Part II: Case Study for Paradigm Implementation. IEEE Trans. Veh. Technol. 2018, 67, 9129–9144. [Google Scholar] [CrossRef]
- He, D.; Ai, B.; Guan, K.; Zhong, Z.; Hui, B.; Kim, J.; Chung, H.; Kim, I. Channel Measurement, Simulation, and Analysis for High-Speed Railway Communications in 5G Millimeter-Wave Band. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3144–3158. [Google Scholar] [CrossRef]
- Hong, T.; Tang, T.; Dong, X.; Liu, R.; Zhao, W. Future 5G mmWave TV Service With Fast List Decoding of Polar Codes. IEEE Trans. Broadcasting 2020, 66, 525–533. [Google Scholar] [CrossRef]
- Wei, H.; Zheng, G.; Jia, M. The Measurements and Simulations of Millimeter Wave Propagation at 38 ghz in Circular Subway Tunnels. In Proceedings of the 2008 China-Japan Joint Microwave Conference, IEEE Microwave Conference, Shanghai, China, 10–12 September 2008; pp. 51–54. [Google Scholar]
- Yang, X.; Lu, Y. Propagation Characteristics of Millimeter Wave in Circular Tunnels. In Proceedings of the 2006 7th International Symposium on Antennas, Propagation & EM Theory, Guilin, China, 26–29 October 2006; pp. 1–5. [Google Scholar]
- Hrovat, A.; Guan, K.; Javornik, T. Traffic impact on radio wave propagation at millimeter-wave band in tunnels for 5G communications. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 2903–2906. [Google Scholar]
- Hrovat, A.; Javornik, T.; Guan, K. Analysis of radio wave propagation at millimeter-wave band in tunnels for 5G communications. In Proceedings of the 2016 22nd International Conference on Applied Electromagnetics and Communications (ICECOM), Dubrovnik, Croatia, 19–21 September 2016; pp. 1–5. [Google Scholar]
- Naqvi, S.I.; Hussain, N.; Iqbal, A.; Rahman, M.; Forsat, M.; Mirjavadi, S.S.; Amin, Y. Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals. Sensors 2020, 20, 3926. [Google Scholar] [CrossRef]
- Iqbal, A.; Basir, A.; Smida, A.; Mallat, N.K.; Elfergani, I.; Rodriguez, J.; Kim, S. Electromagnetic Bandgap Backed Millimeter-Wave MIMO Antenna for Wearable Applications. IEEE Access 2019, 7. [Google Scholar] [CrossRef]
- Elfergani, I.; Rodriguez, J.; Iqbal, A.; Sajedin, M.; Zebiri, C.; Alhameed, R.A. Compact Millimeter-Wave MIMO Antenna for 5G Applications. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020. [Google Scholar]
- Alibakhshikenari, M.; Virdee, B.S.; Khalily, M.; See, C.H.; Alhameed, R.A.; Falcone, F.; Denidni, T.A.; Limiti, E. High-Gain On-Chip Antenna Design on Silicon Layer with Aperture Excitation for Terahertz Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1576–1580. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Babaeian, F.; Virdee, B.S.; Aïssaa, S.; Azpilicueta, L.; See, C.H.; Althuwayb, A.A.; Huynen, I.; Alhameed, R.A.A.; Falcone, F.; et al. A Comprehensive Survey on Various Decoupling Mechanisms with Focus on Metamaterial and Metasurface Principles Applicable to SAR and MIMO Antenna Systems. IEEE Access 2020, 8. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Tian, Z.; Feng, Z. A Bidirectional High-Gain Cascaded Ring Antenna for Communication in Coal Mine. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 761–764. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Tian, Z.; Feng, Z. A Bidirectional Endfire Array With Compact Antenna Elements for Coal Mine/Tunnel Communication. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 342–345. [Google Scholar]
- Guan, K.; Ai, B.; Peng, B.; He, D.; Li, G.; Yang, J.; Zhong, Z.; Kürner, Y. Towards Realistic High-Speed Train Channels at 5G Millimeter-Wave Band—Part I: Paradigm, Significance Analysis, and Scenario Reconstruction. IEEE Trans. Veh. Technol. 2018, 67, 9112–9128. [Google Scholar] [CrossRef]
- Chen, Z.; Hong, W.; Kuai, Z.; Chen, J.; Wu, K. Circularly polarized slot array antenna based on substrate integrated waveguide. In Proceedings of the 2008 International Conference on Microwave and Millimeter Wave Technology, Nanjing, China, 21–24 April 2008; pp. 1066–1069. [Google Scholar]
- Neshati, M.H.; Rahimi, E. Design investigation of dual band H-plane SIW horn antenna with elliptical shaped radiating aperture. In Proceedings of the 2016 24th Iranian Conference on Electrical Engineering, ICEE, Shiraz, Iran, 10–12 May 2016; pp. 545–548. [Google Scholar]
- Luo, Y.; Bornemann, J. Substrate Integrated Waveguide Horn Antenna on Thin Substrate with Back-Lobe Suppression and Its Application to Arrays. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2622–2625. [Google Scholar] [CrossRef]
- Zarmehri, H.J.; Neshati, M.H. Design and Development of High-Gain SIW H-Plane Horn Antenna Loaded With Waveguide, Dipole Array, and Reflector Nails Using Thin Substrate. IEEE Trans. Antennas Propag. 2019, 67, 2813–2818. [Google Scholar] [CrossRef]
- Lee, J.; Park, M.; Kim, Y.; Park, P.; Jeong, J. A novel cell design approach for LTE underground tunnels coverage. In Proceedings of the 2017 International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN), Paris, France, 28–30 November 2017; pp. 1–5. [Google Scholar]
- Hao, Z.C.; Hong, W.; Chen, J.X.; Chen, X.P.; Wu, K. Compact super-wide bandpass substrate integrated waveguide (SIW) filters. IEEE Trans. Microw. Theory Tech. 2005, 53, 2968–2977. [Google Scholar]
- Quan, X.; Li, R.; Cui, Y.; Tentzeris, M.M. Analysis and Design of a Compact Dual-Band Directional Antenna. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.C.; Iskander, M.F.; Zhang, Z. Circularly Polarized Beam-Switching Antenna Array Design for Directional Networks. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 604–607. [Google Scholar] [CrossRef]
- Anguera, J.; Andújar, A.; Jayasinghe, J. High Directivity Microstrip Patch Antennas Perturbing TModd-0 modes. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 39–43. [Google Scholar] [CrossRef]
- Jayasinghe, J.W.; Anguera, J.; Uduwawala, D.N. A High-Directivity Microstrip Patch Antenna Design by Using Genetic Algorithm Optimization. Prog. Electromagn. Res. C 2013, 37, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Hua, Z.; Yue, C.; Shu, L.; Beijia, L.; Hongmei, L.; Qun, W. A printed H-plane horn antenna with loaded dielectric-metal composite lens in ka band. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 426–427. [Google Scholar]
- Wang, H.; Fang, D.; Zhang, B.; Che, W. Dielectric Loaded Substrate Integrated Waveguide (SIW) H-Plane Horn Antennas. IEEE Trans. Antennas Propag. 2010, 58, 640–647. [Google Scholar] [CrossRef]
- Che, W.; Deng, K.; Wang, D.; Chow, Y.L. Analytical equivalence between substrate-integrated waveguide and rectangular waveguide. IET Microw. Antennas Propag. 2008, 2, 35–41. [Google Scholar] [CrossRef]
- Razavi, S.A.; Dvoyrin, V. Development of a Low-Profile Circularly Polarized Cavity-Backed Antenna Using HMSIW Technique. IEEE Trans. Antennas Propag. 2013, 61, 1041–1047. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Kishk, A.A. Study of Bend Discontinuities in Substrate Integrated Gap Waveguide. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 221–223. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Fan, Y. Millimeter-Wave Miniaturized Substrate Integrated Multibeam Antenna. IEEE Trans. Antennas Propag. 2011, 59, 4840–4844. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, S.; Liu, M.; Deng, S.; Li, L. Design of an UWB Microstrip Antenna with DGS Based on Genetic Algorithm. In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT), Pyeong Chang Kwangwoon Do, Korea, 17–20 February2019; pp. 228–232. [Google Scholar]
- Constantine, A.B. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Morote, E.M.; Fuchs, B.; Zürcher, J.F.; Mosig, J.R. Novel Thin and Compact H-Plane SIW Horn Antenna. IEEE Trans. Antennas Propag. 2013, 61, 2911–2920. [Google Scholar] [CrossRef] [Green Version]
Index | Value |
---|---|
<−15 dB | |
Average antenna gain | >6.5 dB |
Antenna Type | Variables | Dimension (mm) |
---|---|---|
Single SIW horn antenna | 3 | |
5.2 | ||
0.326 | ||
Improved antenna | 1.4 | |
10 | ||
3 |
Antenna | (mm) | (mm) | (mm) |
---|---|---|---|
1 | 1.4 | 10 | 3 |
2 | 3.4 | 10 | 3 |
3 | 1.4 | 5 | 3 |
4 | 1.4 | 10 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, T.; Zheng, S.; Liu, R.; Zhao, W. Design of mmWave Directional Antenna for Enhanced 5G Broadcasting Coverage. Sensors 2021, 21, 746. https://doi.org/10.3390/s21030746
Hong T, Zheng S, Liu R, Zhao W. Design of mmWave Directional Antenna for Enhanced 5G Broadcasting Coverage. Sensors. 2021; 21(3):746. https://doi.org/10.3390/s21030746
Chicago/Turabian StyleHong, Tao, Shuli Zheng, Rongke Liu, and Weiting Zhao. 2021. "Design of mmWave Directional Antenna for Enhanced 5G Broadcasting Coverage" Sensors 21, no. 3: 746. https://doi.org/10.3390/s21030746
APA StyleHong, T., Zheng, S., Liu, R., & Zhao, W. (2021). Design of mmWave Directional Antenna for Enhanced 5G Broadcasting Coverage. Sensors, 21(3), 746. https://doi.org/10.3390/s21030746