Galileo L10 Satellites: Orbit, Clock and Signal-in-Space Performance Analysis
Abstract
:1. Introduction
2. Methods and Materials
2.1. Datasets
2.2. Performance Parameters
2.2.1. Orbital Parameters: Inclination and Repeat Period
- denotes the inclination of the orbital plane at time t,
- denotes the inclination angle at reference time (),
- denotes the rate of change of the inclination angle,
- denotes the reference time of the ephemeris data,
- denotes the inclination correction due to the harmonic sine/cosine coefficients (), argument of perigee (), and the true anomaly ().
- n denotes the mean motion,
- denotes the Geocentric gravitational constant,
- a denotes the semimajor axis,
- denotes the correction to the mean motion.
2.2.2. Satellite Clock Correction
- represent the clock correction parameters (bias, drift, drift rate) transmitted in the navigation message at a specific epoch in time,
- t denotes the Galileo time for which the user computes the clock correction,
- denotes the reference time for the clock correction,
- denotes the relativistic correction term.
- is a function of the geocentric gravitational constant and the speed of light. Both of them are constant numerical values (Table 59 [33]). As a result, the following value is used:
- e denotes the orbit eccentricity,
- denotes the square root of the semimajor axis,
- E denotes the eccentric anomaly.
- denote two consecutive epochs for which the satellite clock correction parameter is estimated.
2.2.3. Signal in Space Availability and Accuracy
3. Results
3.1. Orbital Parameters
3.2. Satellite Clock Corrections
3.3. Signal in Space Performance
4. Discussion
4.1. Time Series Analysis of the Orbit Inclination and Orbital Period
4.2. How the Broadcast Satellite Clocks Performed?
4.3. How Was the Signal-in-Space Performance in Terms of Availability and Accuracy?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European GNSS Service Centre. Notice Advisory to Galileo User (NAGU) 2019002. Available online: https://www.gsc-europa.eu/notice-advisory-to-galileo-users-nagu-2019002 (accessed on 10 January 2021).
- European GNSS Service Centre. Notice Advisory to Galileo User (NAGU) 2019003. Available online: https://www.gsc-europa.eu/notice-advisory-to-galileo-users-nagu-2019003 (accessed on 10 January 2021).
- European GNSS Service Centre. Notice Advisory to Galileo User (NAGU) 2019004. Available online: https://www.gsc-europa.eu/notice-advisory-to-galileo-users-nagu-2019004 (accessed on 10 January 2021).
- European GNSS Service Centre. Notice Advisory to Galileo User (NAGU) 2019005. Available online: https://www.gsc-europa.eu/notice-advisory-to-galileo-users-nagu-2019005 (accessed on 10 January 2021).
- European Commission. Galileo Goes Live! 2016. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_16_4366 (accessed on 10 January 2021).
- European Union. Galileo Commercial Service Implementing Decision. OJEU 2017, 60, 36–40. [Google Scholar]
- European Commission. Paving the Way to New Galileo Accuracy and Authentication Services: Galileo E6-B/C Codes Now Available! 2019. Available online: https://www.gsc-europa.eu/news/paving-the-way-to-new-galileo-accuracy-and-authentication-services-galileo-e6-bc-codes-now (accessed on 10 January 2021).
- Steigenberger, P.; Montenbruck, O. Galileo status: Orbits, clocks, and positioning. GPS Solut. 2017, 21, 319–331. [Google Scholar] [CrossRef]
- Galluzzo, G.; Rodriguez, R.L.; Morgan-Owen, R.; Binda, S.; Blonski, D.; Crosta, P.; Gonzalez, F.; Garcia, J.M.; Otero, X.; Sirikan, N.; et al. Galileo System Status, Performance Metrics and Results. In Proceedings of the 2018 International Technical Meeting of The Institute of Navigation, Reston, VA, USA, 29 January–1 February 2018; pp. 790–809. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Multi-GNSS signal-in-space range error assessment—Methodology and results. Adv. Space Res. 2018, 61, 3020–3038. [Google Scholar] [CrossRef]
- Buist, P.; Porretta, M.; Mozo, A.; Tork, H. The Galileo Reference Centre and Its Role in the Galileo Service Provision. In Proceedings of the 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018; p. 11. [Google Scholar]
- Huang, G.; Cui, B.; Xu, Y.; Zhang, Q. Characteristics and performance evaluation of Galileo on-orbit satellites atomic clocks during 2014–2017. Adv. Space Res. 2019, 63, 2899–2911. [Google Scholar] [CrossRef]
- Wu, W.; Guo, F.; Zheng, J. Analysis of Galileo signal-in-space range error and positioning performance during 2015–2018. Satell. Navig. 2020, 20, 6. [Google Scholar] [CrossRef] [Green Version]
- Svehla, D. Noise Model of the Galileo “mm-Clock”. In Geometrical Theory of Satellite Orbits and Gravity Field; Springer International Publishing: Cham, Switzerland, 2018; pp. 251–267. [Google Scholar] [CrossRef]
- Kouba, J. Relativity effects of Galileo passive hydrogen maser satellite clocks. GPS Solut. 2019, 23, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Yuan, Y.; Huang, J.; Zhu, Y.; Wu, J.; Xiong, Y.; Li, X.; Zhang, K. Galileo and QZSS precise orbit and clock determination using new satellite metadata. J. Geod. 2019, 93, 1123–1136. [Google Scholar] [CrossRef]
- Prange, L.; Villiger, A.; Sidorov, D.; Schaer, S.; Beutler, G.; Dach, R.; Jäggi, A. Overview of CODE’s MGEX solution with the focus on Galileo. Adv. Space Res. 2020, 66, 2786–2798. [Google Scholar] [CrossRef]
- Sośnica, K.; Prange, L.; Kaźmierski, K.; Bury, G.; Drożdżewski, M.; Zajdel, R.; Hadas, T. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes. J. Geod. 2018, 92, 131–148. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Zheng, K.; Yuan, Y.; Liu, G.; Xiong, Y. Precise Orbit and Clock Products of Galileo, BDS and QZSS from MGEX Since 2018: Comparison and PPP Validation. Remote. Sens. 2020, 12, 1415. [Google Scholar] [CrossRef]
- Sośnica, K.; Zajdel, R.; Bury, G.; Bosy, J.; Moore, M.; Masoumi, S. Quality assessment of experimental IGS multi-GNSS combined orbits. GPS Solut. 2020, 24, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kazmierski, K.; Zajdel, R.; Sośnica, K. Evolution of orbit and clock quality for real-time multi-GNSS solutions. GPS Solut. 2020, 24, 1–12. [Google Scholar] [CrossRef]
- Andrei, C.O.; Johansson, J.; Koivula, H.; Poutanen, M. Signal performance analysis of the latest quartet of Galileo satellites during the first operational year. In Proceedings of the 2020 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Alonso, M.T.; Sanz, J.; Juan, J.M.; Rovira García, A.; Casado, G.G. Galileo Broadcast Ephemeris and Clock Errors Analysis: 1 January 2017 to 31 July 2020. Sensors 2020, 20, 6832. [Google Scholar] [CrossRef] [PubMed]
- Buist, P.; Mozo, A.; Tork, H. Overview of the Galileo Reference Centre: Mission, Architecture and Operational Concept. In Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017; pp. 1485–1495. [Google Scholar] [CrossRef]
- European GNSS (Galileo). Open Service-Service Definition Document, Issue v1.1. 2019. Available online: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-OS-SDD_v1.1.pdf (accessed on 12 December 2020).
- European GNSS Service Centre. Performance Reports. 2020. Available online: https://www.gsc-europa.eu/electronic-library/galileo-service-performance-reports (accessed on 12 December 2020).
- Noll, C.E. The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Adv. Space Res. 2010, 45, 1421–1440. [Google Scholar] [CrossRef] [Green Version]
- Johnston, G.; Riddell, A.; Hausler, G. The International GNSS Service. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, P.J., Montenbruck, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 967–982. [Google Scholar] [CrossRef]
- Prange, L.; Arnold, D.; Dach, R.; Schaer, S.; Sidorov, D.; Stebler, P.; Villiger, A.; Jäggi, A. CODE Product Series for the IGS MGEX Project. 2018. Available online: https://boris.unibe.ch/119494/ (accessed on 10 January 2021).
- Prange, L.; Arnold, D.; Dach, R.; Kalarus, M.S.; Schaer, S.; Sidorov, D.; Stebler, P.; Villiger, A.; Jäggi, A. CODE Product Series for the IGS MGEX Project. 2020. Available online: https://boris.unibe.ch/143807/ (accessed on 10 January 2021).
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- IGS/RTCM. RINEX: The Receiver Independent Exchange Format Version 3.04. 2018. Available online: http://acc.igs.org/misc/rinex304.pdf (accessed on 12 December 2020).
- European GNSS (Galileo) Open Service. Signal-in-Space Interface Control Document, Issue 1.3. 2016. Available online: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-OS-SIS-ICD.pdf (accessed on 12 December 2020).
- European GNSS (Galileo) Open Service. Ionospheric Correction Algorithm for Galileo Single Frequency Users, Issue 1.2. 2016. Available online: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_Ionospheric_Model.pdf (accessed on 12 December 2020).
- Falcone, M.; Hahn, J.; Burger, T. Galileo. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, P.J., Montenbruck, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 247–272. [Google Scholar] [CrossRef]
- Montenbruck, O.; Gill, E. Satellite Orbits: Models, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Brown, A. Trajectory models and reference frames for crustal motion geodesy. J. Geod. 2014, 88, 283–311. [Google Scholar] [CrossRef] [Green Version]
- European GNSS Service Centre. Notice Advisory to Galileo User (NAGU) 2019013. Available online: https://www.gsc-europa.eu/notice-advisory-to-galileo-users-nagu-2019013 (accessed on 10 January 2021).
- Droz, F.; Mosset, P.; Barmaverain, G.; Rochat, P.; Qinghua, W.; Belloni, M.; Mattioni, L.; Schmidt, U.; Pike, T.; Emma, F.; et al. The on-board Galileo clocks: Rubidium standard and Passive Hydrogen Maser—Current status and performance. In Proceedings of the 20th European Frequency and Time Forum, Braunschweig, Germany, 27–30 March 2006; pp. 420–426. [Google Scholar]
- European GNSS Service Centre. Notice Advisory to Galileo User (NAGU) 2020021. Available online: https://https://www.gsc-europa.eu/notice-advisory-to-galileo-users-nagu-2020021 (accessed on 10 January 2021).
- European GNSS Service Centre. Notice Advisory to Galileo User (NAGU) 2019025. Available online: https://www.gsc-europa.eu/notice-advisory-to-galileo-users-nagu-2019025 (accessed on 10 January 2021).
- Maanmittauslaitos. Galileo incident of July 11th to 17th. Available online: https://www.maanmittauslaitos.fi/en/topical_issues/galileo-incident-july-11th-17th (accessed on 10 January 2021).
- Navarro-Reyes, D.; Notarantonio, A.; Taini, G. Galileo Constellation: Evaluation of Station Keeping Strategies. 21st International Symposium on Space Flight Dynamics (ISSFD). 2009. Available online: https://issfd.org/ISSFD_2009/MissionDesignI/NavarroReyes.pdf (accessed on 12 December 2020).
- Lara, M.; San-Juan, J.F.; López, L.M.; Cefola, P.J. On the third-body perturbations of high-altitude orbits. Celest. Mech. Dyn. Astron. 2012, 113, 435–452. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Broadcast versus precise ephemerides: A multi-GNSS perspective. GPS Solut. 2015, 19, 321–333. [Google Scholar] [CrossRef]
- Steigenberger, P.; Montenbruck, O. Consistency of MGEX Orbit and Clock Products. Engineering 2020, 6, 898–903. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Comparing the ‘Big 4’—A User’s View on GNSS Performance. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 407–418. [Google Scholar] [CrossRef]
SVID | PRN | Navigation Message | Time of Ephemerides | Operational | ||
---|---|---|---|---|---|---|
Code | FNAV | INAV | First | Last | 11–Feb–2019 | |
GSAT0219 | E36 | 64691 | 64521 | 04-Dec-2018 18:10:00 | 31-Dec-2020 22:40:00 | 10:26:00 UTC |
GSAT0220 | E13 | 58298 | 58346 | 12-Dec-2018 02:10:00 | 31-Dec-2020 23:40:00 | 10:56:00 UTC |
GSAT0221 | E15 | 64390 | 64349 | 10-Dec-2018 17:30:00 | 31-Dec-2020 23:40:00 | 11:26:00 UTC |
GSAT0222 | E33 | 60174 | 60102 | 06-Dec-2018 20:30:00 | 31-Dec-2020 23:40:00 | 12:10:00 UTC |
TOTAL | 247553 | 247318 |
Nr. | Performance | Type | Performance | Target | Reference |
---|---|---|---|---|---|
crt. | Parameter | Metric | Value | ||
1 | Orbit inclination | FoM | mean, std. | 56 ± 2° | Table 9.1, [35] |
2 | Orbit repeat period | FoM | mean, std. | 14 h 04 m 42 s | Table 9.1, [35] |
3 | Satellite clock correction | FoM | |||
(a) rate of change | 1st order derivative | - | this study | ||
(b) accuracy | root-mean-square | - | this study | ||
4 | Signal in Space availability | KPI | % of time | ≥87% | Table 13, [25] |
5 | Signal in Space accuracy | KPI | 95th percentile | ≤7 m | Table 9, [25] |
FoM | 99th percentile | - | this study |
Parameter | Amplitudes (s) | Trends (s/y) | |
---|---|---|---|
Satellite | 354-Day Period | 177-Day Period | |
GSAT0219/E36 | 0.121 ± 0.038 | 0.139 ± 0.037 | 0.09 ± 0.05 |
GSAT0220/E13 | 0.121 ± 0.038 | 0.133 ± 0.037 | 0.10 ± 0.05 |
GSAT0221/E15 | 0.125 ± 0.038 | 0.136 ± 0.037 | 0.10 ± 0.05 |
GSAT0222/E33 | 0.128 ± 0.039 | 0.138 ± 0.038 | 0.10 ± 0.05 |
Mean | 0.124 ± 0.038 | 0.137 ± 0.037 |
Statistics | GSAT / PRN | Best | Value | Best | Value |
---|---|---|---|---|---|
Month | Day | ||||
95th | GSAT0219/E36 | Mar-2019 | 0.174 | 03-Sep-2020 | 0.083 |
percentile | GSAT0220/E13 | Jun-2019 | 0.241 | 15-Dec-2019 | 0.124 |
GSAT0221/E15 | Sep-2019 | 0.169 | 08-Aug-2020 | 0.094 | |
GSAT0222/E33 | Jul-2020 | 0.185 | 02-Apr-2019 | 0.085 | |
quadruplets | Jun-2020 | 0.242 | 02-Sep-2020 | 0.166 | |
99th | GSAT0219/E36 | Jun-2020 | 0.250 | 03-Sep-2020 | 0.088 |
percentile | GSAT0220/E13 | Apr-2019 | 0.304 | 10-Apr-2019 | 0.129 |
GSAT0221/E15 | Jul-2020 | 0.240 | 07-Sep-2020 | 0.116 | |
GSAT0222/E33 | Jul-2020 | 0.255 | 05-Jun-2019 | 0.130 | |
quadruplets | Jun-2020 | 0.310 | 05-Sep-2020 | 0.179 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrei, C.-O.; Lahtinen, S.; Poutanen, M.; Koivula, H.; Johansson, J. Galileo L10 Satellites: Orbit, Clock and Signal-in-Space Performance Analysis. Sensors 2021, 21, 1695. https://doi.org/10.3390/s21051695
Andrei C-O, Lahtinen S, Poutanen M, Koivula H, Johansson J. Galileo L10 Satellites: Orbit, Clock and Signal-in-Space Performance Analysis. Sensors. 2021; 21(5):1695. https://doi.org/10.3390/s21051695
Chicago/Turabian StyleAndrei, Constantin-Octavian, Sonja Lahtinen, Markku Poutanen, Hannu Koivula, and Jan Johansson. 2021. "Galileo L10 Satellites: Orbit, Clock and Signal-in-Space Performance Analysis" Sensors 21, no. 5: 1695. https://doi.org/10.3390/s21051695
APA StyleAndrei, C. -O., Lahtinen, S., Poutanen, M., Koivula, H., & Johansson, J. (2021). Galileo L10 Satellites: Orbit, Clock and Signal-in-Space Performance Analysis. Sensors, 21(5), 1695. https://doi.org/10.3390/s21051695