Optimal Access Point Power Management for Green IEEE 802.11 Networks †
Abstract
:1. Introduction
2. Related Work
3. WLAN Model
3.1. The Model of AP Power Consumption
3.2. Propagation and the Data Rate Model
3.3. The Traffic Model
4. Mathematical Problem Formulation
- , if then TN i is associated with AP j, otherwise TN i is not associated with AP j;
- , if then AP j is using PL k, otherwise AP j is not using PL k.
Comments on the Formulation
5. Benders’ Decomposition-Based Algorithm (BDA)
6. Performance Evaluation
6.1. Test Scenarios
6.2. Computational Results
6.2.1. The Effect of the Number of Access Points
6.2.2. The Effect of the TN/AP Ratio
6.2.3. The Effect of the Number of Power Levels
6.2.4. The Effect of the Traffic Load
6.2.5. Solving Time
6.3. A Comparison with a Similar Method
7. Implementation Considerations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Vasilakos, A.V.; Chen, M.; Liu, Y.; Kwon, T.T. A Survey of Green Mobile Networks: Opportunities and Challenges. Mob. Netw. Appl. 2012, 17, 4–20. [Google Scholar] [CrossRef]
- Wildemeersch, M.; Quek, T.; Slump, C.; Rabbachin, A. Cognitive Small Cell Networks: Energy Efficiency and Trade-Offs. IEEE Trans. Commun. 2013, 61, 4016–4029. [Google Scholar] [CrossRef]
- Pantazis, N.; Nikolidakis, S.; Vergados, D. Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey. IEEE Commun. Surv. Tutorials 2013, 15, 551–591. [Google Scholar] [CrossRef]
- Mehmood, A.; Khan, S.; Shams, B.; Lloret, J. Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. Int. J. Commun. Syst. 2015, 28, 972–989. [Google Scholar] [CrossRef]
- De La Oliva, A.; Banchs, A.; Serrano, P. Throughput and energy-aware routing for 802.11 based mesh networks. Comput. Commun. 2012, 35, 1433–1446. [Google Scholar] [CrossRef]
- Luo, C.; Guo, S.; Guo, S.; Yang, L.; Min, G.; Xie, X. Green Communication in Energy Renewable Wireless Mesh Networks: Routing, Rate Control, and Power Allocation. IEEE Trans. Parallel Distrib. Syst. 2014, in press. [Google Scholar] [CrossRef] [Green Version]
- Jibukumar, M.G.; Datta, R.; Biswas, P.K. Busy tone contention protocol: A new high-throughput and energy-efficient wireless local area network medium access control protocol using busy tone. Int. J. Commun. Syst. 2012, 25, 991–1014. [Google Scholar] [CrossRef]
- Hwang, R.H.; Wang, C.Y.; Wu, C.J.; Chen, G.N. A novel efficient power-saving MAC protocol for multi-hop MANETs. Int. J. Commun. Syst. 2013, 26, 34–55. [Google Scholar] [CrossRef]
- Miliotis, V.; Apostolaras, A.; Korakis, T.; Tao, Z.; Tassiulas, L. New channel allocation techniques for power efficient WiFi networks. In Proceedings of the 21st IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Workshops (PIMRC), Istanbul, Turkey, 26–30 September 2010; pp. 347–351. [Google Scholar] [CrossRef]
- Palacios, R.; Granelli, F.; Gajic, D.; Lis, C.; Kliazovich, D. An energy-efficient point coordination function using bidirectional transmissions of fixed duration for infrastructure IEEE 802.11 WLANs. In Proceedings of the IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 2443–2448. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Duan, Y.; Long, K.; Leung, V.C.M. Energy Efficient Resource Allocation in Terahertz Downlink NOMA Systems. IEEE Trans. Commun. 2021, 69, 1375–1384. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Liu, W.; Long, K.; Dong, J.; Leung, V.C.M. Energy Efficient User Clustering and Hybrid Precoding for Terahertz MIMO-NOMA Systems. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Lorincz, J.; Capone, A.; Begusic, D. Heuristic Algorithms for Optimization of Energy Consumption in Wireless Access Networks. KSII Trans. Internet Inf. Syst. 2011, 5, 626–648. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Saavedra, A.; Serrano, P.; Banchs, A.; Hollick, M. Energy-efficient fair channel access for IEEE 802.11 WLANs. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Lucca, Italy, 20–24 June 2011. [Google Scholar] [CrossRef]
- Dufková, K.; Bjelica, M.; Moon, B.; Kencl, L.; Le Boudec, J.Y. Energy savings for cellular network with evaluation of impact on data traffic performance. In Proceedings of the European Wireless Conference (EW), Lucca, Italy, 12–15 April 2010; pp. 916–923. [Google Scholar] [CrossRef] [Green Version]
- Candogan, U.; Menache, I.; Ozdaglar, A.; Parrilo, P. Near-Optimal Power Control in Wireless Networks: A Potential Game Approach. In Proceedings of the IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yang Li, X.; Li, M.; Lou, W. Energy-Efficient Wake-Up Scheduling for Data Collection and Aggregation. IEEE Trans. Parallel Distrib. Syst. 2010, 21, 275–287. [Google Scholar] [CrossRef]
- Benders, J. Partitioning prodedures for solving mixed-variables programming problems. Numer. Math. 1962, 4, 238–252. [Google Scholar] [CrossRef]
- Dezfouli, B.; Esmaeelzadeh, V.; Sheth, J.; Radi, M. A review of software-defined WLANs: Architectures and central control mechanisms. IEEE Commun. Surv. Tutorials 2018, 21, 431–463. [Google Scholar] [CrossRef] [Green Version]
- Riggio, R.; Marina, M.K.; Schulz-Zander, J.; Kuklinski, S.; Rasheed, T. Programming abstractions for software-defined wireless networks. IEEE Trans. Netw. Serv. Manag. 2015, 12, 146–162. [Google Scholar] [CrossRef] [Green Version]
- Zubow, A.; Zehl, S.; Wolisz, A. BIGAP—Seamless handover in high performance enterprise IEEE 802.11 networks. In Proceedings of the NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 445–453. [Google Scholar]
- Li, W.; Wang, S.; Cui, Y.; Cheng, X.; Xin, R.; Al-Rodhaan, M.A.; Al-Dhelaan, A. AP association for proportional fairness in multirate WLANs. IEEE/ACM Trans. Netw. 2013, 22, 191–202. [Google Scholar] [CrossRef]
- De Oliveira, T.M.; Da Silva, M.W.; Cardoso, K.V.; de Rezende, J.F. Virtualization for load balancing on IEEE 802.11 networks. In Proceedings of the International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services, Sydeny, Australia, 6–9 December 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 237–248. [Google Scholar]
- Coronado, E.; Riggio, R.; Villalón, J.; Garrido, A. Wi-balance: Channel-aware user association in software-defined wi-fi networks. In Proceedings of the NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–9. [Google Scholar]
- Bayhan, S.; Coronado, E.; Riggio, R.; Zubow, A. User-AP Association Management in Software-Defined WLANs. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1838–1852. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, X.; Wang, H.; Stojmenovic, I.; Liu, J. A Survey of Energy Efficient Wireless Transmission and Modeling in Mobile Cloud Computing. Mob. Netw. Appl. 2013, 18, 148–155. [Google Scholar] [CrossRef]
- Jardosh, A.P.; Papagiannaki, K.; Belding, E.M.; Almeroth, K.C.; Iannaccone, G.; Vinnakota, B. Green WLANs: On-Demand WLAN Infrastructures. Mob. Netw. Appl. 2009, 14, 798–814. [Google Scholar] [CrossRef] [Green Version]
- Lorincz, J.; Capone, A.; Begusic, D. Optimized network management for energy savings of wireless access networks. Comput. Netw. 2011, 55, 514–540. [Google Scholar] [CrossRef]
- Couto da Silva, A.P.; Meo, M.; Marsan, M.A. Energy-performance trade-off in dense WLANs: A queuing study. Comput. Netw. 2012, 56, 2522–2537. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Liu, J.; Shen, X.; Xie, L.L. Optimal power allocation and AP deployment in green wireless cooperative communications. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 4000–4005. [Google Scholar] [CrossRef]
- Wu, W.; Luo, J.; Dong, K.; Yang, M.; Ling, Z. Energy-Efficient User Association with Congestion Avoidance and Migration Constraint in Green WLANs. Wirel. Commun. Mob. Comput. 2018, 2018, 9596141. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Hasegawa, G.; Murata, M. An analysis of energy consumption for TCP data transfer with burst transmission over a wireless LAN. Int. J. Commun. Syst. 2015, 28, 1965–1986. [Google Scholar] [CrossRef]
- Garroppo, R.G.; Nencioni, G.; Tavanti, L.; Gendron, B.; Scutellà, M.G. Energy-efficient resource allocation in wireless LANs under non-linear capacity constraints. In Proceedings of the 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Pisa, Italy, 14–16 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Tutschku, K. Demand-based radio network planning of cellular mobile communication systems. In Proceedings of the 17th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), San Francisco, CA, USA, 29 March–2 April 1998; Volume 3, pp. 1054–1061. [Google Scholar] [CrossRef]
- Cisco. Aironet 3600 Series Access Point. 2014. Available online: https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-3600-series/data_sheet_c78-686782.html (accessed on 16 March 2021).
- Song, J.; Di Renzo, M.; Zappone, A.; Sciancalepore, V.; Perez, X.C. System-Level Optimization in Poisson Cellular Networks: An Approach Based on the Generalized Benders Decomposition. IEEE Wirel. Commun. Lett. 2020, 9, 1773–1777. [Google Scholar] [CrossRef]
- Balazinska, M.; Castro, P. Characterizing mobility and network usage in a corporate wireless local-area network. In Proceedings of the 1st International Conference on Mobile Systems, Applications and Services (MobiSys), San Francisco, CA, USA, 5–8 May 2003; ACM: New York, NY, USA, 2003; pp. 303–316. [Google Scholar] [CrossRef] [Green Version]
- European Comission. COST 231—Digital Mobile Radio Towards Future Generations Systems; Final Report; European Comission: Brussels, Belgium, 1999. [Google Scholar]
- Wilson, R. Propagation Losses Through Common Building Materials: 2.4 GHz vs 5 GHz; Technical Report E10589; Magis Networks, Inc.: San Diego, CA, USA, 2002. [Google Scholar]
- De Francisco, R. Indoor Channel Measurements and Models at 2.4 GHz in a Hospital. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), Miami, FL, USA, 6–10 December 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, K.; Zhao, J.; Wu, H.; Zhang, Y. A Practical SNR-Guided Rate Adaptation. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Phoenix, AZ, USA, 13–18 April 2008; pp. 2083–2091. [Google Scholar] [CrossRef]
- Suresh, L.; Schulz-Zander, J.; Merz, R.; Feldmann, A.; Vazao, T. Towards programmable enterprise WLANs with Odin. In Proceedings of the First Workshop on Hot Topics in Software Defined Networks (HotSDN), Helsinki, Finland, August 2012; pp. 115–120. [Google Scholar] [CrossRef]
Scenario | [kbps] | D [m] | ||||
---|---|---|---|---|---|---|
R | 50 | 300 | 6 | 4 | 450 | 21/42 |
A1 | 20 | 120 | 6 | 4 | 450 | 21/42 |
A2 | 100 | 600 | 6 | 4 | 450 | 21/42 |
B1 | 50 | 150 | 3 | 4 | 450 | 21/42 |
B2 | 50 | 450 | 9 | 4 | 450 | 21/42 |
C1 | 50 | 300 | 6 | 3 | 450 | 21/42 |
C2 | 50 | 300 | 6 | 5 | 450 | 21/42 |
D1 | 50 | 300 | 6 | 4 | 300 | 21/42 |
D2 | 50 | 300 | 6 | 4 | 600 | 21/42 |
Parameter | Value |
---|---|
path loss exponent (n) | 2.34 |
reference distance () | 1 m |
reference path loss () | 40.1 dB |
constant loss () | 14.2 dB |
wall loss () | 3.5 dB |
column loss () | 6.0 dB |
antenna gain | 3 dBi |
Scen. | Active APs | Power [W] | Gain [%] | TN/AP | Airtime [%] |
---|---|---|---|---|---|
R | 5.7 | 78.9 | 89.5 | 47.6 | 76.8 |
A1 | 3.1 | 40.8 | 86.4 | 35.3 | 62.1 |
A2 | 10.2 | 144.5 | 90.4 | 52.9 | 81.3 |
B1 | 5.2 | 72.5 | 90.3 | 26.1 | 47.9 |
B2 | 6.2 | 85.5 | 88.6 | 65.7 | 87.9 |
C1 | 5.7 | 78.8 | 89.5 | 47.6 | 74.8 |
C2 | 5.7 | 78.7 | 89.5 | 47.6 | 76.0 |
D1 | 5.6 | 78.0 | 89.6 | 48.0 | 57.0 |
D2 | 5.8 | 81.2 | 89.2 | 46.5 | 86.2 |
Scen. | Active APs | Power [W] | Gain [%] | TN/AP | Airtime [%] |
---|---|---|---|---|---|
R | 21.1 | 287.6 | 61.7 | 12.8 | 30.2 |
A1 | 9.5 | 127.6 | 57.5 | 11.3 | 29.5 |
A2 | 39.4 | 541.9 | 63.9 | 13.7 | 32.7 |
B1 | 19.0 | 258.8 | 65.5 | 7.1 | 21.0 |
B2 | 22.3 | 305.3 | 59.3 | 18.1 | 39.8 |
C1 | 21.1 | 289.2 | 61.4 | 12.8 | 27.1 |
C2 | 21.1 | 287.0 | 61.7 | 12.8 | 29.3 |
D1 | 21.1 | 287.4 | 61.7 | 12.8 | 22.0 |
D2 | 21.2 | 288.9 | 61.5 | 12.8 | 36.8 |
Scenario | ||
---|---|---|
R | 4.9 | 1.8 |
A1 | 0.1 | 0.2 |
A2 | 269 | 42.9 |
B1 | 0.9 | 0.8 |
B2 | 129 | 18.7 |
C1 | 3.6 | 1.6 |
C2 | 5.2 | 1.9 |
D1 | 3.4 | 4.3 |
D2 | 23.6 | 138 |
Ring | Power Level | ||||
---|---|---|---|---|---|
54 | 54 | 54 | 54 | 52.8 | |
33.1 | 27.8 | 22.5 | 17.3 | 12 | |
12 | 6.7 | 1.4 | 0 | 0 |
Scenario | BDA | RME, = 40 m | RME, = 24 m | |||||
---|---|---|---|---|---|---|---|---|
Time | Time | Power | Loss [%] | U.I. [%] | Time | Power | Loss [%] | |
R@21m | 4.9 | 2320 | 88.0 | 11.6 | 70 | 63.1 | 182.8 | 133.5 |
A1@21m | 0.1 | 2.5 | 40.8 | 0.2 | 25 | 1.8 | 83.9 | 105.6 |
A2@21m | 269 | 3240 | 172 | 18.7 | 45 | 2839 | 342.4 | 139.5 |
B1@21m | 0.9 | 5.4 | 72.3 | −0.3 | 85 | 1.2 | 166.0 | 123.9 |
B2@21m | 129 | 3240 | 106 | 23.4 | 15 | 916 | 187.9 | 122.7 |
C1@21m | 3.6 | 2156 | 88.2 | 11.8 | 65 | 1.0 | 186.8 | 138.1 |
C2@21m | 5.2 | 2663 | 88.1 | 11.9 | 85 | 71.9 | 182.7 | 133.4 |
D1@21m | 3.4 | 46.5 | 77.8 | −0.2 | 85 | 7.0 | 181.5 | 132.7 |
D2@21m | 23.6 | 3241 | 99.9 | 23.0 | 80 | 199 | 184.5 | 132.1 |
R@42m | 1.8 | 0.7 | 284.1 | −1.2 | 90 | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garroppo, R.G.; Nencioni, G.; Tavanti, L.; Gendron, B.; Scutellà, M.G. Optimal Access Point Power Management for Green IEEE 802.11 Networks. Sensors 2021, 21, 2076. https://doi.org/10.3390/s21062076
Garroppo RG, Nencioni G, Tavanti L, Gendron B, Scutellà MG. Optimal Access Point Power Management for Green IEEE 802.11 Networks. Sensors. 2021; 21(6):2076. https://doi.org/10.3390/s21062076
Chicago/Turabian StyleGarroppo, Rosario G., Gianfranco Nencioni, Luca Tavanti, Bernard Gendron, and Maria Grazia Scutellà. 2021. "Optimal Access Point Power Management for Green IEEE 802.11 Networks" Sensors 21, no. 6: 2076. https://doi.org/10.3390/s21062076
APA StyleGarroppo, R. G., Nencioni, G., Tavanti, L., Gendron, B., & Scutellà, M. G. (2021). Optimal Access Point Power Management for Green IEEE 802.11 Networks. Sensors, 21(6), 2076. https://doi.org/10.3390/s21062076